
GAN-Driven Anomaly Detection for Active Learning in Medical Imaging Segmentation 

Automatic image segmentation is crucial for automation in cancer detection, image-guided 
treatment, and response assessment. MD Anderson has several ongoing initiatives to develop and 

clinically deploy automated segmentation of diseased and normal tissues to support tumor 
measurement initiatives, clinical trials in image-guided interventions, and image quality 
assurance and quality control. To achieve these goals, extensive research has been performed to 
develop image segmentation models using deep learning. A critical barrier to the deployment of 

these models is the need to detect “anomalous” cases where the segmentation model may fail, 
even after significant external validation has been performed. 

Aim: Develop interpretable, deep learning-based anomaly detectors to improve the robustness 
of segmentation models. I will build a generative adversarial network (GAN)-based anomaly 

detector that will allow for the safe integration of automatic segmentation models into a clinical 
workflow. The detector will flag images that a segmentation model will not perform well on so 
that they can be manually segmented (Figure 1). These manually segmented images could then 
be added to the training set of the automatic segmentation model, consequently diversifying both 

the dataset and the model’s proficiencies. 

 

Figure 1: An active learning paradigm for the integration of automatic segmentation models into 
a clinical workflow. 

Significance 

Deep learning algorithms are the state-of-the-art automatic segmentation models for 

medical imaging, with research spanning many anatomical regions and imaging modalities1. 
Although these models perform exceptionally well on new data that is similar to the data that 
they were trained on, they do not generalize well to novel structures (Figure 2). Due to this poor 
generalization capability, the success of many deep learning models today hinges on training on 

large amounts of labeled data. For most medical imaging applications, this is infeasible, due to 
both the cost of labeling and protecting patient privacy. I propose anomaly detectors as a 
solution. An anomaly detector could flag images that a deployed deep learning model will not 
perform well on. It could also detect the images in an unlabeled dataset that contain the most 

unique features, thereby prioritizing which images should be labeled manually. 



 

Figure 2: Instances where a trained liver segmentation model failed due to abnormalities not 
present in the training dataset: (A) a stent, (B) a tumor, and (C) fluid buildup. Red is the 
automated segmentation and light blue is the manual contour. The model had a Dice coefficient 
over 0.96 on 50 unseen computed tomography (CT) scans. Thank you to Brian Anderson for this 

image. 

Innovation 

Using GANs to detect anomalies has recently become an active area of research. Schlegl 
et al. were the first to use a GAN for anomaly detection. They used it to locate retinal fluid in 

OCT images2,3. Their inaugural work has since been applied to various medical domains and 
applications4-12. In every paper, GANs were used to flag diseases (tumors, hemorrhages, etc.) I 
will be the first to use GAN-based anomaly detectors for active learning, a field of machine 
learning where a model may query a user if it is uncertain about a given input.  Current GAN 

methods on medical imaging modalities generate slices (or patches) of medical images 
independently from one another. In contrast, I plan to exploit the intricacies of medical imaging 
modalities by incorporating the locational relationship between slices.  

Methods 

I will build an anomaly detector that will function as an active labeler of an automatic 
segmentation model. If the detector finds an image to be within its training distribution, the 
image will be automatically segmented. Otherwise, the image will be manually segmented 
(Figure 1). 

To model the training distribution, I will use a semi-supervised StyleGAN14 due to its 
performance on high-resolution images. I plan to incorporate the 3D locational information into 
the GAN by experimenting with both conditioning the GAN on the relative slice location and by 
making the GAN 3D. I will then train an encoder to map images to the generator’s latent space. 

With this encoder, I will then reconstruct images using the generator.  

Once trained, the model can then be used to assign an anomaly score. This score is 
twofold: (1) a reconstruction score, and (2) a feature matching score, as in Salimans et al. 13 If the 
score is over a specified threshold, the image will be classified as anomalous. The full anomaly 

detection scheme is presented in Figure 3. The first experiment will be trained on 96 CT scans 
and tested on 50 unseen CT scans. 



 

Figure 3: The anomaly detection scheme. 
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