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Abstract

We consider using Markov chains to solve facility location problems. We find that Markov chains,
coupled with realistic assumptions, can find optimal facility locations defined in terms of four
metrics. Namely, the mean first passage time, consumer throughput, top-tier, and the Kemeny
constant. As a case study, we present a novel Markov chain construction that finds the optimal
location for a new religious center of a Christian denomination.

I. Introduction

Problems in facility location theory focus on
finding optimal locations for facilities to meet
consumer demand, either by adding new facil-
ities or relocating existing ones. There are a
myriad of ways to define an optimal location,
but the standard definition is a location that
minimizes the average distance traveled by a
consumer to fulfill a demand (Owen & Daskin,
1998). Additional definitions of optimal include
the location that minimizes the maximum dis-
tance traveled to fulfill a demand, the location
to maximize consumer throughput, and the loca-
tion that minimizes the average time consumers
are required to travel to reach suppliers. In this
paper, we show that a Markov chain can be
used to solve facility location problems based
on these definitions of optimal.

A fundamental facility location problem is the
P -median problem, which tries to minimize the
distance that a consumer must travel to reach
their nearest facility (Current, Min, & Schilling,
1990). Typical applications of P -median prob-
lems include finding optimal locations for indus-
trial warehouses to minimize shipping distances
(Jakubovskis, 2017), stores to maximize avail-
ability to customers (Klose, & Drexl, 2005), and
emergency response public services where re-
sponse time is imperative (Ghosh, & Gosavi,
2017). As a special case of the P -median prob-

lem, we will be contrasting our methods with
an approximate solution to the Fermat-Weber
problem, the Weighted-Distance Model (WDM)
(Bose, Maheshwari, & Morin, 2003). This so-
lution seeks to minimize the average distance
between consumers and a supplier. An example
of this model in application can be found in the
paper by Ndiaye, Ndiaye and Ly (2012).

In comparison to the WDM, we use a Markov
chain to model the behavior of consumers as
they interact with facilities. Markov chains re-
veal the effects that simple local behaviors have
on more complex global behaviors through mod-
eling the behavior as a network. This is similar
to the goal of many facility location problems,
as it is often the case that the behavior be-
ing optimized is about the aggregate populous
and not the specific actions of certain individ-
uals. Markov chains have been used in many
applications, including: mathematical ecology
(Kirkland, 2014), computational biology (Krogh,
Brown, Mian, Sjolander, & Haussler, 1994), and
network modeling (Newman, 2003), but they
have not been commonly used in facility loca-
tion problems. In this paper, we show that
Markov chains provide a flexible and efficient
way to model facility location problems that
offers additional information not found in the
standard analysis of the P -median problem.

This paper proceeds as follows. Section 2
contains a literary review of facility location
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problems, as well as literature pertaining to the
WDM and the Markov chain method. Section
3 will outline the construction of the Markov
transition matrix used to solve facility location
problems, give the results of the general testing
of the model and expand on insights gained
while studying the model. Section 4 details the
set up and results of our model to determine
new locations for religious centers of a Christian
denomination. Section 5 will conclude the paper
with suggestions for further work.

II. Literature Review

Facility location management is one of the most
thoroughly-analyzed areas of operations research
(Abin, 2016). In fact, Current, Min and Schilling
cite a recent bibliography on this subject that
had over 1500 titles, showing the vast expanse of
research in this area (1990). Owen and Daskin,
in their literature review, give an overview of the
most-used models among this immense amount
of literature. They comment on 15 differing sub-
sets of facility location problems, again demon-
strating the vastness of the literature and ap-
plicability of the problem (1998). Although the
library of facility location management is large,
this review will primarily focus on various ap-
proaches to median problems. As we use Markov
chains as an approach to median problems later,
we will also review literature pertaining to tra-
ditional uses of Markov chains.

The study of location theory began in 1909
when Alfred Weber was researching possible
warehouse locations based on the average dis-
tance to be traveled by those who would visit
the warehouse (Owen & Daskin, 1998). His re-
search created the basis for median problems, or
problems that determine a facility location by
minimizing the average distance traveled by con-
sumers. As noted by Melo, Nickel and Saldanha-
da-Gamma, the P -median problem is considered
to be the foundational median problem. They
define the P -median problem as the problem of
placing P facilities in locations that minimize
the total weighted distance (or costs) to satisfy
customer demands (2009).

From this rudimentary definition of a P -
median problem arises a multitude of slight
variations that account for the context of the

problem. For example, Berman, Drezner, and
Wesolowsky use a model formulation which al-
lows demands to be serviced by facilities other
than the one closest to them (2003). Bruni,
Beraldi, and Conforti use an undirected graph
to model a complex water distribution network
(2016). Lastly, Agra, Cerdeira, and Requejo de-
compose a large P -median problem into smaller
P -median problems. Once the optimal locations
for each of these smaller problems are found,
they are used to find a more globally optimal
solution (2017).

P -median problems have been approached
from the perspective of many different academic
disciplines. Example approaches have ranged
from interval optimization (Yadav, Karmakar,
Dikshit, & Bhurjee, 2018), iterative goal pro-
gramming (Karatas, & Yakici, 2018), hyper
heuristics with space reductions (Ren, Jiang,
Xuan, & Luo, 2010), to hybrid binary parti-
cle swarm optimization (Lin, & Guan, 2018).
Typically, weighted-distance models (WDMs)
involving Euclidean distance have been used
(Francis, Lowe, Rayco, Tamir, 2009). Other dis-
tances that can be used can be found in a paper
by Bach (1981).

Many WDMs using Euclidean distance have
had past successes. Yang and Mei were able to
create a sustainable agricultural development
model for Zhenyuan County of Gansu province
in China (2017). Bargos, Lamas, Bargos, Neto,
and Pardal found that the Euclidean WDM
could accurately find optimal locations for sug-
arcane mills in Brazil (2016). Lastly, Xie, Zhou,
Xiao, Kulturel-Konak, and Konak used it as part
of a hybrid model for real industrial applications
(2018).

There are several disadvantages of the WDM.
For instance, Carling, Han, and Hakansson
showed that in rural areas the model is sen-
sitive to distance measure and spatial position-
ing of demand points (2012). They also point
out that in rural areas, the unit transportation
cost will vary considerably, leading to unreliable
weighted distance models. Additionally, some
weights (such as the ones that consider the at-
tractiveness of facilities) can give unstable solu-
tions (Carling, Han, Hakansson, & Rebreyend,
2015). Lastly, the WDM is also very computa-
tionally expensive, leading to consumers being
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grouped together (Carling, Han, Hakansson, &
Rebreyend, 2014). This practice of consolidating
consumer populations has a significantly adverse
effect on the final solution (Hillsman, & Rhoda,
1978) (Zhao, & Batta, 1999).

Due to the disadvantages of WDMs, we are
interested in contrasting it with a Markov chain.
Markov chains stochastically model the tran-
sitioning of states in a closed system in dis-
crete time, with the assumption that the state
transition depends only on the current state
(McMurtrey, Morgan, Pratt, & Wirthlin, 2008).
They have been used in a variety of applications,
including modeling contributions to online com-
munities (Chen, Wei, Zhu, 2018), augmentation
segmentation of infant cry signals (Naithani et
al, 2018), and automatic detection of seismic
events (Bhatti et al., 2016). *** This section
talked about hidden markov models, so the three
examples given are for hidden markov models.
Is this OK or do we need to find some different
applications of regular markov models? ***

In terms of applications to location theory, the
literature is fairly sparse. In their paper, Rosen-
thal, White and Young used a infinite-horizon
Markov decision chain in location analysis. In
particular, they modeled the relocation of facil-
ities as consumers dynamically relocate. They
used a Markov chain to model the dynamic
relocation of consumers, but do not use it to
determine the optimal location of demand-filling
facilities (Rosenthal, 1978).

We aim to fill this gap in the literature by
showing that Markov chains can be used to
find the optimal location of facilities. Whereas
other models exists to find optimal locations,
they often only consider one unit of measure-
ment of “optimal”. For example, the WDM only
considers the average distance to a facility of
every customer. A Voronoi diagram can find
the maximum geographical area that a facility
serves (Sugihara, 2008). The Markov chain, in
contrast, can take into consideration several dif-
ferent metrics. We will specifically focus on the
mean first passage time, throughput, Kemeny
constant, and top-tier as discussed in Faizrah-
nemoon et al. in regards to detailing the access
to a hospital by bus stops (2015).

III. Markov Chain Modeling

Various properties of a Markov Chains can deter-
mine optimal facility locations, each represent-
ing a different metric. These properties used in
tandem can optimize many different attributes
of a supply network. In this section, we develop
the construction of the Markov chain, its prop-
erties and how they relate to various metrics.

i. Background

A Markov chain is an example of a stochastic
simulation of a closed system with n states in
discrete time. We create an n × n transition
matrix X where Xi,j represents the probability
of moving from state i to state j in one time
step. As this is a closed system, in each time
step the probability that a person moves from
state i to some state in the system (including
possibly remaining at i) is 1. Therefore, each
row sums to one, making X row stochastic. 1

One of the powerful applications of Markov
chains is that we can easily derive an equilib-
rium solution, or steady state solution. We can
model any initial condition (i.e. distribution of
people) as a vector ~w0 and see the state of the
system after one time step by taking ~w1 = ~w0X.
More generally, we say ~wn+1 = ~wnX. Thus, we
can find the distribution of the system at any
given time for any given starting distribution.
Because X is row stochastic, the all ones vec-
tor is a right eigenvector. As the matrix only
contains probabilities in the range [0, 1], we can
add a small “teleport” factor everywhere so that
0 ≺ X ≺ 1. Therefore, by the Perron-Frobenius
theorem, the dominant eigenvalue of X is 1 and
that it has an all-positive left eigenvector. This
eigenvector is known as the Perron eigenvector
and represents the steady state of the model.
We use this steady state solution to observe the
effect of a new facility on the distribution of
consumers. By altering the location of this pro-
posed facility, we can find the optimal location
for the new facility.

For a more in-depth background to Markov
chain modeling please refer to the “background”

1An equivalent construction could use a column
stochastic transition matrix, but, without loss of gener-
ality, we continue with the row stochastic formulation
here.
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CC CS

SC SS


Figure 1: A block diagram of the transition matrix

X. C represents a consumer location and
S a supplier location. CC corresponds
to a person moving from one consumer
location to another. The other parts of
the matrix follow similarly.

section of the paper by Faizrahnemoon et al.
(2015). The Markov chain model that we use
is based on the model used in their paper. It
involves two stages: the initialization of X and
the computation of the metrics.

ii. The Transition Matrix

Let the first k rows and columns of X correspond
to consumer locations, where k is the number of
consumer locations. The remaining columns and
rows will correspond to the supplier locations
as shown in Figure 1. We will now detail the
process of finding Xi,j for all i, j.

As Markov chains only consider aggregate be-
havior, assume that consumers do not transition
from one consumer location to another (or from
one supplier location to another, including stay-
ing at that location). In other words, Xi,j = 0
for all i, j such that 0 ≤ i, j < k and i 6= j or
k ≤ i, j < n.

Let di be the distance from the consumer
location i to the nearest supplier location. In
order to define a region of significance, transform
di by a variant of the sigmoid function σ(di) :
R→ [0, 1]

σ(di) =
1

1 + eγ(di−α)
− β, (1)

where γ, α, and β represent, respectively, a
stretch factor, a domain shift, and a range
shift. This transformation accounts for situ-
ations where consumers are located far or near
enough away from a supplier location that re-
ducing the distance between the two locations
would have a negligible effect on the probability
of the consumer going to the supplier location.
If this region of significance does not hold signifi-
cance for the modeler, a different transformation

which best suits the situation should be chosen.

The values on the diagonal of X represent the
probability of a consumer not visiting a supplier
in one time period. Let p be the probability that
a consumer visits the nearest supplier facility
on any given time step. Thus, for 0 ≤ i < k,

Xi,i = p+ (1− p) · g(di).

As is common with consumers, this formula
makes the probability of a consumer not visiting
a facility inversely proportional to the distance
to that facility.

To consider movement from a consumer to a
supplier, let

Di =

n∑
k=j

1

ed(i,j)

where d(i, j) is the distance between two loca-
tions. The distance can be calculated in any way
that is suitable for the situation. The Euclidean
distance can be used for ease of computation, but
any other way of measuring distance between
two points, such as arc length along the Earth
or driving distance using Google Maps, would
be appropriate in certain situations. Then,

Xi,j = Xi,i ·
1

ed(i,j)

Di

for all 0 ≤ i < k and k ≤ j < n.

Now consider the movement from suppliers
to consumers

Xi,j =
(1−Xj,j) ·Xj,i

Ei

where

Ei =

k∑
m=0

(1−Xm,m) ·Xm,i

and k ≤ i < n and 0 ≤ j < k.

This construction results in X being a row
stochastic matrix. We can see this by fixing
i ≤ k where k is the number of consumers. Then
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n∑
j=0

Xi,j = Xi,i +

n∑
j=k

(1−Xi,i) ·
1

ed(i,j)∑n
l=k

1
ed(i,k)

= Xi,i + (1−Xi,i)

n∑
j=k

1
ed(i,j)∑n
l=k

1
ed(i,k)

= Xi,i + (1−Xi,i)

∑n
j=k

1
ed(i,j)∑n

l=k
1

ed(i,k)

= Xi,i + (1−Xi,i)

= Xi,i + 1−Xi,i

= 1

Thus, the first k rows are stochastic.

To see that the remainder of the rows are
stochastic, fix i such that k < i ≤ n. Then:

n∑
j=0

Xi,j =

n∑
j=0

(1−Xj,j) ·Xj,i∑k
m=0(1−Xm,m) ·Xm,i

=

∑n
j=0(1−Xj,j) ·Xj,i∑k

m=0(1−Xm,m) ·Xm,i

=

∑k
j=0(1−Xj,j) ·Xj,i∑k

m=0(1−Xm,m) ·Xm,i

= 1

Where the third equality holds because Xj,i =
0 for k < j ≤ n Thus, we see that X is row
stochastic.

To make X a positive matrix, we add a “tele-
port” factor to each entry in X. While this does
not model true behavior, it ensures that the
matrix satisfies the Perron-Frobenius theorem.
This is done as follows:

Given e, a small number greater than zero,
let

Xi,j = (1− e)Xi,j +
e

n

for all i, j. This preserves the row stochastic
nature of the matrix and ensures there is a pos-
itive value in every entry, therefore making the
matrix ergodic. We choose e to be significantly
smaller than any values in the transition matrix
so the results are not influenced too greatly by
the presence of the teleport factor.

iii. Proposed Metrics

As previously discussed, current facility location
models only consider one metric to measure the
optimality of a network. In contrast, a Markov
chain can consider several metrics. In this sec-
tion we will discuss four of these metrics, namely:
mean first passage time, throughput, top-tier
and the Kemeny constant. We will refer to X
in blocks, as outlined in Figure 1.

iii.1 Mean First Passage Time

The mean first passage time represents the av-
erage time it takes to pass from one state to
another. This can be computed for every pair of
states. Many organizations care about increas-
ing customer accessibility to their facilities, and
optimizing on this metric will increase accessi-
bility.

In block CS, the mean first passage time from
i to j would represent the average time it takes
for consumer at location i to visit the supplier
location j. By minimizing the mean first passage
time, we minimize the average amount of time
it takes for a consumer to visit a supplier. To
measure an entire network, we use a function
of the entries of the mean first passage time
matrix.

This matrix is defined as in Kirkland et al.
(2008),

M = [I−X# + JnX#
d ]Π−1

where I is the n× n identity matrix, X# is the
group inverse of X, Jn is the n×n matrix of all
ones, X#

d is the n × n diagonal matrix whose
diagonal entries are the corresponding diagonal
entries of X#, and where Π is the diagonal ma-
trix whose diagonal entries are the correspond-
ing entries of the equilibrium state vector of
the transition matrix (Kirkland, Neumann, Sze,
2008).The group inverse is the unique n×n ma-
trix that satisfies X#XX# = X#, XX#X = X,
and XX# = X#X. The i, j-th entry of X#

gives the average number of time steps required
for a person starting in state i to get to state j.

X# has the same block structure as Figure 1.
In this paper, we are only concerned with the CS
block of this matrix. However, under a different
problem formulation, other blocks could give
meaningful information. As a consumer would
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typically only visit the facility closest to them,
we are only concerned with the smallest value
in each row of the CS block. Consequently, we
want to minimize the sum of the minimum value
of each row. By optimizing M on this metric,
we reduce the overall difficulty of a consumer
getting to a supplier location.

To use this metric, choose a set of new facility
locations. To use this metric, choose a set of
proposed facility locations. For each location,
add it to the existing network, and compute M.
Following this, sum the smallest entries in each
row. The optimal location from this set is the
location that has the smallest row sum in M.

The optimal location will be determined by
the location with the smallest sum.

iii.2 Throughput

In order to increase revenues, a reasonable thing
to maximize is the number of people that visit
suppliers during each time step. For example, a
restaurant wants the most people to go through
each location. If there are more people at the
store daily, then revenues will increase, which is
likely a desirable behavior in the network.

Referencing the first Perron eigenvector again,
we can see the steady state of the network. Each
entry in the eigenvector gives the proportion of
people in the in that state in the long term
or equilibrium. By this construction, the last
n−k terms in the eigenvector correspond to the
proportion of people who visit a supplier in a
given day. To maximize the number of people
who visit the supplier, we maximize the sum of
these last n − k places in the eigenvector. To
carry this out, we take the proposed location for
the new facility, calculate the transition matrix
for the network with the proposed facility, and
compute the first Perron eigenvector. Then, we
sum over the last n− k entries in the vector. In
comparison to the mean first passage time, the
optimization problem induced by this metric is
throughput-centric.

iii.3 Top-tier

It also may be of interest to enlarge a consumer
base by focusing on increasing accessibility for
those who are currently having the most diffi-
culty getting to suppliers. This would represent

situations such as hospitals or fire stations that
desire to minimize the difficulty for outliers to
get to a supplier’s location. By doing this, the
worst-case response time of the fire station will
be decreased because the ability of outlier con-
sumers to visit suppliers is increased.

In order to have the most benefit for the con-
sumers that have the most difficulty getting to
the suppliers, we again consider the first Per-
ron eigenvector. The consumer entries with the
highest values in the equilibrium vector will have
the highest proportion of people in that location
at any given day. In order to get their business,
these consumers must be able to visit suppliers
more easily, which corresponds to a reduction
in their entry in the Perron eigenvector. To do
this, we compute the Perron eigenvector for the
network before adding a new facility and note
the states that have the highest values in the
eigenvector. We choose the top L% to mini-
mize, where L varies based on the context of
the problem being considered. If L is large, this
metric turns into the throughput metric. If L is
very small, then a few locations will dominate
the decision-making process. For example, if
we choose only one location to reduce, then the
logical thing to do would be to place a supplier
right on that consumer’s location.

By optimizing on this metric, we ensure that
the people that have the most difficulty getting
to a supplier will be benefited the most.

iii.4 Kemeny Constant

The Kemeny constant is defined to be

K =
∑

λ∈σ(X)
λ6=1

1

1− λ

Where σ(X) is the spectrum of X (get reference
for cho and meyer 2001). It measures the con-
nectedness of a network. By maximizing the
Kemeny constant, the network becomes more
connected; that is, it is easier to reach any state
from any other state. This would be useful in
situations like warehouses and distribution cen-
ters, where it is important for there to be many
links from warehouses to distribution centers to
allow for flexible and optimized scheduling of
transport of goods.
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IV. Case Study

In this section we present an example of a facility
location problem, in which some, but not all, of
the metrics discussed previously give valuable
information. The example given here is that of
The Church of Jesus Christ of Latter-Day Saints
(the LDS church) building new temples.

For members of the LDS Church, temples are
a facility of worship and visiting them is believed
to be imperative in the process of gaining salva-
tion. In this problem, we assume that the LDS
Church is attempting to satisfy one of two goals,
either increasing the access that its members
have to temples (Top-tier metric) or generating
the highest attendance to its temples overall
(Throughput metric).

As a control case, we use a P -median method
to minimize the distance of each church member
to their closest temple. The distance is mea-
sured as a transformation of the geophysical
distance, which is in turn calculated via Vin-
centy’s Formulae. We will refer to the Vincenty
distance by dv. The transformation is given by:

f(dv) =
1

1 + e−0.053∗(dv−70)
− 0.024

This is a special case of (1) with the con-
stants γ, α, and β chosen to mimic the effect
of a temple a certain distance away. Here, the
assumption is that the difference between hav-
ing a temple 5 miles away and 10 miles away is
marginal, as is the difference between having a
temple 200 miles away and 400 miles away. The
assumption implies that the biggest impact will
come from people who were previously about 90
miles away from a temple and are now 20 miles
away.

In the LDS church, church members are
grouped by geographical area. Each grouping of
members is called a stake, and a building of wor-
ship, called a stake center, is located within each
stake. For our model, instead of the residence
of each individual member, we use the location
of the stake center to calculate dv. Let each
stake center be represented as si, each temple
as tj , the set of all the stake centers as S, the
set of original temples as T , and the set of new
temples as Tnew. An example representation of
the setup of this problem with each stake be-
ing connected to its two closest temples can be

found in Figure 1. The average distance a given
member of an LDS stake has to travel to get to
their closest temple is

h(S, T ) =
1

n

∑
i

min
j
{d(si, tj)}.

Thus, the unconstrained optimization problem
can be written as

minimize
T∗

h(S, T ∗), where T ∗ = T ∪ Tnew.

T1

S1

S5

S4

S3

T2

S6

T3

S2 S7

0.6

1.5

0.4

1.2

0.2 0.4

0.3

0.3

1.6 0.7

0.4

1.2

0.8

0.2

Figure 2: A sample graph including 7 stakes and 3
temples. Note: Edges in this figure are
a measure of distance, not a measure of
probability. Not to scale.

For ease of computation, we only considered
Tnew with carnality 1; That is, we assume only
one temple is to be added at a time.

To minimize the objective function, we sam-
pled the value of h in the United States at one
million evenly spaced points. For the test case,
we used the WDM as a comparison of what the
P -median problem would yield.

i. Weighted Distance Model Setup

To fully understand the model, it is crucial
to know what factors were considered relevant.
Chief among these factors is the distance d(si, tj)
from a stake center to a temple. This distance
is measured using the Vincenty Algorithm in
order to account for the shape of the earth and
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give accurate measurements based on latitude
and longitude. This is a naive Euclidean dis-
tance not based upon actual driving or walking
distances. Using an API to find all of these ac-
tual distances could be considered for increased
accuracy in future work.

The only other relevant factor to the WDM
was the weight associated with each distance,
ωi. For convenience, we set these weights to 1
to get our initial result. As this is a standard
P -median problem, the weights can be adjusted
to account for additional factors, as desired.

The WDM is designed to minimize the average
weighted distance a given member of a LDS
stake has to travel to get to their closest temple.
As such, this model does not take into account
the capacity of the temples, nor the relative
accessibility of other temples, even if they are
a similar distance away. The only assumption
made about the behavior of church members is
that they desire to have a temple close to their
stake center, and that they will only use the
closest temple to them.

ii. Markov Model Setup

To solve this problem, we used the Markov chain
model that can be found in Section 3 using the
variables in Table 1. To simplify this model a
number of assumptions were made. First, we
assumed that every LDS stake in the United
States has the same number of active, temple-
going members contained within its boundaries.
This approximation, combined with the assump-
tion that every stake center is located at the
center of the stake, allowed us to estimate the
member density of each stake, ρi. The purpose
of ρi is to relate how much traffic each stake
would provide to its nearest five temples.

Next, for each stake, we assumed the number
of members that attend the temple on an average
day given the stake center’s Euclidean distance
(again determined by the Vincenty Algorithm)
to and the busyness of its 5 closest temples. We
determined the busyness of a temple, τi, based
on the number of stakes that listed that temple
as one of its five closest temples.

In order to create this model, we initialize a
square probability matrix P in which the first
k rows and columns correspond to the stakes
in the United States and the next m rows and

Variable Description
d(si, tj) Distance from stake si to temple tj
ρi Density of stake si
S Set of all stakes
si Stake number i
T Set of all temples
Tnew The proposed new temple locations
ti Temple number i
τi Temple score of temple ti

Table 1: Important variables for the Markov model
used to solve the LDS location problem.

columns correspond to the temples in the United
States. Each Pi,j in the matrix represents the
probability that a person in row i will travel
to column j in the current state. The diagonal
entries Pi,i represent the probability that a per-
son will remain in their current state (i.e. not
visit a temple on a given day). The time, in this
case, is in days, so each multiplication of the
transition matrix onto a distribution vector will
simulate one day passing.

We begin populating the matrix by allowing
the diagonals Pi,i = p + f(d) with p = 29/30
which numerically represents the assumption
that in each state, 1/30 of a stake’s temple at-
tendees will attend the temple in a given day
(using f from (1)). We follow the procedures out-
lined in section 3.2 to populate the remainder
of the matrix.

iii. Results

This will be filled in soon, once we’ve run the
final model on the case study data. We will
present the results of the case study, compare
them to the results from the P -median problem,
and discuss the advantages and disadvantages
of using the Markov chain.

V. Conclusion

Discrete mathematics is already in wide use in
facility location theory. The development and
discussion of methods based on Markov chains
is another example of using tools from discrete
mathematics to give researchers and decision
makers more information. A system modeled as
a network via a Markov chain can be analyzed
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to optimize its throughput, connectedness, and
many other mathematical properties, each with
possible applications in the area of facility loca-
tion theory. According to the arguments given
here and the computational evidence, there is
strong reason to believe that the simplified qual-
itative interpretation of the metrics used to op-
timize a network indeed work as presented.

In the conclusion, we will also cover ideas for
application and further work.

An interaction could be a sale made, a visit
to a retail location, or any other meaningful
experience that a consumer would have with a
supplier.
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