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Abstract

Reinforcement learning (RL) methods traditionally have suffered from large sample
complexities, which reduces their widespread effectiveness. This is particularly
true for the beginning stages of deep RL methods, where the methods must learn
what the objects in an environment are in addition to what actions to take. We aim
to improve the sample complexity of deep RL methods by disentangling these two
tasks, using unsupervised learning methods to complete the first task. In particular,
we propose a method that embeds learned environmental representations into a
Deep Q-Network (DQN), so that the DQN does not have to learn the environment
itself. Specifically, we provide a Rainbow DQN with robust environment repre-
sentations of Atari video games created through a conditional variational ladder
autoencoder with coordinate convolutions.

1 Introduction

Reinforcement learning (RL) is a popular area of current research across various fields, including
psychology, neuroscience and computer science [7]. RL methods train autonomous agents to
choose actions that maximize an aggregate reward. These methods learn through trial and error
and consequently are subject to scalability issues. In particular, they struggle with memory and
computational complexity [1].

Even when these algorithms are scalable, they may have a large sample complexity. For example,
Lake et al. describe a Deep Q-Network (DQN) that was able to achieve human-level performance on
some Atari video games, but it took about 500 times more experience for the algorithm to learn to
play the games as compared to human subjects [9]. The drastic difference was even more pronounced
in the early training stages as humans had basic knowledge of the video game environments that the
DQN did not have.

We aim to improve the sample efficiency of RL algorithms by embedding in them representations
of their environment (created through unsupervised learning methods). In particular, we create
robust representations of Atari video game states through the use of a conditional variational ladder
autoencoder with coordinate convolutions. We then concatenate these compressed representations
onto the states in a Rainbow DQN.

The main contributions of this paper are as follows:

1. We create robust representations of the Atari game environment.

2. We improve the sample efficiency of Rainbow.

3. We successfully embed unsupervised learning into reinforcement learning.



2 Preliminaries

2.1 Autoencoders

An autoencoder is an unsupervised neural network that attempts to reconstruct its input. The
network can be seen as having two parts, an encoder function f(·) and a decoder function g(·). The
encoder takes the input x and embeds it into a compressed space, often referred to as the latent
space representation, z = f(x). The decoder takes this representation and attempts to construct the
original input x̃ = g(z). In other words, the goal of the autoencoder is to learn f(·) and g(·) so that
g(f(x)) = x. It learns f and g by minimizing a loss function between x and x̃. A commonly used
loss function for autoencoders is mean-squared error.

A variational autoencoder (VAE) forces f to produce a latent representation z that follows a standard
Gaussian distribution [8]. It does this by having the encoder map to a vector of means µµµ and vector of
standard deviations σσσ. It then draws samples from these vectors, resulting in the latent representation
z ∼ N (µµµ,σσσ). A latent loss, the Kullback-Liebler (KL) divergence between the latent space and
standard Gaussian distributions, is added to the overall loss of the autoencoder.

A variational ladder autoencoder (VLAE) defines a joint distribution of latent representations
p(z1, ..., zL), where L is the number of representations [21]. Each zi is the resulting encoding of a
network fi. Each fi has a progressively deeper structure, leading to the varying levels of abstraction
for the zi’s. These networks are constructed in a ladder-like fashion by having the input to each
network fi be the last layer of the previous network (before it maps to µµµi and σσσi). In the case of
f1, the network encodes the input image. As the network is variational, each zi is drawn from the
Gaussian distribution zi ∼ N (µµµi,σσσi). The input of the model is then reconstructed using a ladder
of decoder networks, where each gi inputs the concatenation of zi and the output of the previous
decoder z̃i+1

z̃i = gi(z_i z̃i+1).

In the case of the first decoder gL, it only takes as input zL. The last decoder g1 reconstructs the
original image. The loss of the VLAE is the exact same as that of a normal VAE, where the latent
representation is defined to be the concatenation of each zi,

z = z_1 · · ·_ z_i · · ·_ zL.

Conditional VAEs (CVAEs) are used to model multi-modal distributions [16]. In particular, they
condition specific layers of a VAE on a random variable, often a class. This conditioning of layers
on a random variable has been applied to other types of generative networks. As an example of this,
the conditional instance normalization method was developed for style transfer networks [3]. After
normalization, this method shifts and scales each network layer h

h = γγγc(
h−µµµ
σσσ

) + βββc

with separate shift βββ and scale γγγ parameters for each class c.

Coordinate convolutions (CoordConvs) add coordinate information to convolutions in order to make
the transform between high-level spatial latents and pixels easier to learn [10]. It does this by
concatenating two channels to a convolution’s input. The first channel contains the x-value of each
coordinate while the second has the y-value. In other words, the first channel’s first row is filled with
zeros, the second with ones, etc. While the second channel’s first column is filled with zeros, the
second with ones, etc. The convolution can then decide whether to use this spatial information, or
discard it to preserve translational invariance.

2.2 Q-learning models

Q-learning is a RL method that learns a probability distribution over actions given states, or a policy
π. The policy is learned through the optimal action-value function

Qπ(st, at) = Eπ[Rt|st, at], (1)

where st represents the current state, at the proposed action, Rt =
∑∞
k=0 λ

k
t+1rt+k+1 is the future

discounted cumulative reward, rt the reward given at time t, and λt the discount factor. Models are

2



episodic in practice, so λt is a constant λ ∈ [0, 1] through all time except for after the ending time T ,
where λt>T = 0. Rt is discounted by λt+1 to place heavier interest on more immediate rewards. The
Q-value is the action at that maximizes the result of Equation 1. The optimal action-value function
follows an identity called the Bellman Equation

Qπ(st, at) = Es′ [rt+1 + λmax
a′

Qπ(s′, a′)|st, at]. (2)

The expectation is taken over all the possible states to model the states stochastically.

A Deep Q-Network (DQN) was the first model to combine neural networks and reinforcement learning
[11]. Neural networks are often described as function approximators, and in this case a Q-network is
a function approximator for discovering the Q-values. The algorithm uniformly samples a mini-batch
of transitions (actions with corresponding states and rewards) from the network’s replay memory.
Each transition can be seen as a state in a Markov decision process. These states are fed iteratively
through a Bellman equation update

Qi+1(st, at) = Es′ [rt+1 + λmax
a′

Qi(s
′, a′)|st, at] (3)

resulting in the policy at each state πi converging to the best policy π.

A Rainbow DQN is an extension of the DQN that incorporates several different improvements upon
the algorithm [6]. These improvements include decomposing the max operation in the target into
action selection and action evaluation to reduce overestimation, prioritized experience replay, and
using stochastic layers for exploration [19, 15, 5].

3 Related work

Previous research into improving the sample efficiency of RL methods has often involved transfer
learning. In their papers, Taylor et al. survey and analyze transfer learning in RL contexts [17, 18].
They find that there has been transfer success in the algorithms learning navigation and robot soccer
keepaway. For example, Zhang et al. used RL to teach a robot to navigate a maze [20]. They were
able to transfer knowledge from previously mastered mazes to new ones. Another approach was
taken by Moreno et al. They attempted to embed prior knowledge into the algorithm by restricting its
exploration space [12].

More specific to the learning of Atari games, Parisotto et al. used an actor-critic method to train
an agent to simultaneously learn on a variety of tasks and then generalize what it has learned to
other tasks [13]. They found that their pre-learning methods led to significant speed up in their deep
Q-network learning to play 3/7 Atari games that they tested it on. They attributed the speed up of
two of these games (Breakout and Pinball) to the fact that pre-learning was done on a similar game
(Pong). Chaplot et al. repeated their results in 3D video game environments [2].

While the above-mentioned research transfers knowledge from one RL method to another trained on
a different task, we want to transfer knowledge from an unsupervised method. Although there has
been recent research in combining unsupervised and RL methods, it focuses mainly on methods in
the two fields that could be deemed equivalent. For example, Pfau and Vinyals successfully used a
generative adversarial network (GAN) as an actor-critic method where the actor cannot effect the
reward [14]. Similarly, Fin et al. showed that GANs and some Inverse RL methods are equivalent
[4]. In contrast to these papers combining unsupervised and reinforcement learning by showing their
equivalence in certain situations, we aim to use them in tandem, including their inherent differences.

4 Methods

4.1 Conditional VLAE with CoordConv

To create our learned representations, we used a VLAE. We decided to use this model as Zhao
et al. showed that it excels at finding disentangled representations [21]. Additionally, we wanted
to use its capabilities to model various levels of abstraction. As we are testing in an Atari video
game environment, we made the VLAE conditional to better model the different games. We made it
conditional by using conditional instance normalization on each layer in the VLAE. Additionally, we
replaced each convolutional layer with a CoordConv layer. We did this to lessen the mode collapse of
the placement of objects in the VLAE reconstructions.
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Figure 1: Random reconstructions of Atari games using the trained VLAE.

We trained the VLAE on randomized screenshots from 10 Atari games,1 obtained by simulating
their respective video game environments and taking random actions. Random reconstructions of the
VLAE can be seen in Figure 1. Parameters for our implementation, along with ablation studies on the
VLAE can be found in Appendix A.

4.2 Rainbow evaluation

We incorporate the VLAE into Rainbow when it is feeding the transitions (states, actions, and rewards)
into the replay memory. Specifically, we embed each state through the VLAE and concatenate it to
the bottom of the state. When testing on a class that the VLAE has never seen, we pass in a random
class into the conditional invariance normalization. We hypothesize that this added information about
the object representations will help Rainbow to be more sample efficient in the early stages.

5 Results

We ran Rainbow with the VLAE embeddings on Atlantis, Name This Game, Seaquest, Space Invaders
and Chopper Command. Notice that we did not train the VLAE on Chopper Command. Figures 2-6
compare the average reward (taken over 10 game simulations) of Rainbow when it has access to the
VLAE embeddings and when it does not.

We find that our method had a higher average reward in two of the games (Space Invaders and
Atlantis), a similar reward in two games (Name This Game and Chopper Command) and worse in
one of the games (Seaquest). We also note that the reward for Rainbow with the VLAE embeddings
has much higher variance than for the original Rainbow implementation.

1Air Raid, Atlantis, Gravitar, Name This Game, River Raid, Seaquest, Solaris, Space Invaders, Time Pilot,
and Zaxxon.
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Figure 2: The average reward (taken over 10 game simulations) of Rainbow with and without the
VLAE embeddings for Space Invaders.

Figure 3: The average reward (taken over 10 game simulations) of Rainbow with and without the
VLAE embeddings for Atlantis.
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Figure 4: The average reward (taken over 10 game simulations) of Rainbow with and without the
VLAE embeddings for Name This Game.

Figure 5: The average reward (taken over 10 game simulations) of Rainbow with and without the
VLAE embeddings for Chopper Command.

Figure 6: The average reward (taken over 10 game simulations) of Rainbow with and without the
VLAE embeddings for Seaquest.
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6 Conclusion

We found that in a few promising cases, a conditional variational ladder autoencoder with coordinate
convolution learned objects representations that decreased the sample complexity of the Rainbow
DQN, especially at early stages of training. Future work includes:

1. Actually including results for using the conditional instance normalization...

2. Embeddings four images a time to catch dynamics

3. Trying other unsupervised and reinforcement learning algorithms
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Table 1: Parameters for the VLAE implementation

Parameter Description Parameter Value

Dimension of post-processing images [96, 96, 3]
Range of post-processing image values [-1.0, 1.0]
Batch size 100
Number of layers in encoder 4
Learning rate 0.0002
Dimension of each latent [21]
Number of outputs of each layer {64, 128, 256, 512, 1024}
Kernel size [4, 4]
Stride {1, 2}

Figure 7: Random reconstructions of Atari games using the trained VLAE without conditional
instance normalization. In these reconstructions, one could see mode collapse and mixing up of the
games. Compare to Figure 1.

A Implementation and Ablation Studies

Table 1 contains the parameters for the VLAE implementation. Table 2 contains the parameters for
the Rainbow implementation. As for the ablation experiments, Figures 7 & 8 are the reconstructions
without conditioning and coordinate convolutions respectively.
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Table 2: Parameters for the Rainbow implementation

Parameter Description Parameter Value

Max episode length 108,000
Number of states processed at a time 4
Network hidden size 512
Initial standard deviation of noisy layers 0.1
Discretized size of value distribution 51
Replay memory capacity 1,000,000
Prioritized experience replay exponent 0.5
Minimum of value distribution -10
Maximum of value distribution 10
Frequency of sampling from memory 4
Initial prioritized experience replay importance sampling weight 0.4
Number of steps for multi-step return 3
Discount 0.99
Number of steps after which to update target network 32,000
Reward clipping 1
Learning rate 0.0000625
Batch size 32
Number of steps before training starts 80,000
Number of evaluation episodes to average over 10
Number of transitions to use for validating Q 500

Figure 8: Random reconstructions of Atari games using the trained VLAE without coordinate
convolutions. In these reconstructions, one could see mode collapse (the backgrounds are there, but
no ships or other changing details). Compare to Figure 1.
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