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ABSTRACT

We demonstrate analytically that it is possible to construct
a developable mechanism on a cone that has rigid motion. We
solve for the paths of rigid motion and analyze the properties
of this motion. In particular, we provide an analytical method for
predicting the behavior of the mechanism with respect to the con-

ical surface. Moreover, we observe that the conical developable
mechanisms specified in this paper have motion paths that nec-
essarily contain bifurcation points which lead to an unbounded
array of motion paths in the parameterization plane.
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1 Introduction
A developable surface is a surface that can be obtained by

bending, without folding, a flat surface [4]. Hence, given the in-
ner metric, it is locally isometric to the Euclidean plane. For de-
velopable surfaces, the Gaussian curvature, or the product of the
two principle curvatures, is necessarily zero [10, 13, 14]. Basic
families of developable surfaces include planar, cylindrical, con-
ical, and tangent surfaces [14].

Engineers can take advantage of the lower production costs
and complexity associated with using developable surfaces in
their designs. Developable surfaces designed utilizing flexible
materials can be manufactured in a flat state and later trans-
formed into their desired curved forms. Additionally, devel-
opable surfaces can often be manufactured without the heat treat-
ment required for the production of other types of surfaces [8].
Some applications of developable surfaces include steel ship
hulls, cartography, architecture, aerodynamics and texture map-
ping in computer graphics [1–3, 8, 15].

Because developable surfaces are commonly used in design,
it is of interest to discover innovative ways to create functionality
on these surfaces. Developable surfaces in R3 are ruled surfaces
in the sense that they are contained in the union of a one para-
metric family of lines, called ruling lines. The existence of ruling
lines allows the possibility of creating mechanisms by introduc-
ing crease hinges along the ruling lines of the surface.

Developable mechanisms are mechanisms that “conform to
developable surfaces when both are modeled with zero thick-
ness” [9]. This zero-thickness surface is called the developable
mechanism’s reference surface [5]. The links of a developable
mechanism should not be required to deform in order for the
mechanism to have motion. This can be achieved by aligning
hinge lines with the reference surface’s ruling lines [9]. In at
least one position, the conformed position, the mechanism’s links
must conform to the developable reference surface. This requires
the rigid links to be shaped to the surface when in their con-
formed position [5]. Cylindrical developable mechanisms have
been discussed by [5] and have inspired the creation of surgical
devices [12]. Since the beginning of this work, additional work
has been done on conical developable mechanisms which is pre-
sented in [6].

The motivation of this paper is the demonstration of the
mathematical modeling and analysis of developable mechanisms
that can be constructed using kirigami techniques, similar to de-
signs for planar surfaces. Kirigami is a variation of origami that
includes cutting in addition to folding [11]. Kirigami has in-
spired the creation of lamina emergent mechanisms, or mecha-
nisms that can be fabricated in a plane, and then emerge from the
surface [7]. Both planar and spherical lamina emergent mech-
anisms are possible [16]. Although originally based on planar
surfaces, lamina emergent mechanisms have facilitated the cre-
ation of deployable mechanisms on other developable surfaces,
such as cylinders and cones [10]. The lamina emergent planar

FIGURE 1: A lamina emergent planar mechanism that has rigid
motion.

mechanism shown in Figure 1 is a developable mechanism that
is constructed from a planar surface using kirigami and consists
of panels linked at hinge joints whose hinge lines are all paral-
lel. This mechanism has parallelogram linkage and therefore is
a special case Grashof mechanism. As a result, the mechanism
illustrated will have change points, which correspond to bifurca-
tion points in its motion paths.

In this paper, we construct an analogous mechanism cut out
of a cone as shown in Figure 2. This mechanism employs the
principles of both developable mechanisms and lamina-emergent
mechanisms and will be referred to as a developable conical
mechanism because it is constructed from a cone. Note that the
particular developable conical mechanism also has parallelogram
linkage. Thus, if a rigid motion exists, it will necessarily have
change points. We will proceed by providing a model of the
the motion of the mechanism, and then prove analytically that
a rigid motion, or motion without deforming the surface or the
links, does exist. We will then provide a detailed description of it
motion, with special attention to the initial motion from its con-
formed position at bifurcation points in the motion path.

2 Construction and Setup
In this section, we detail the construction of the developable

conical mechanism and begin to set up the mathematical model
utilized in determining the rigid motion of the panels on the
mechanism.

2.1 The Mechanism
Let C ⊂ R3 be a cone centered on the positive z-axis with

its cone point at the origin, and having cone angle φ . The devel-
opable conical mechanism is constructed by cutting out a section
of the cone and folding along hinge lines to form three panels
(links) with the remainder of the cone forming a fourth panel
(link), as shown in Figure 2. The panel P0 is the main body of
the cone. The panels P1 and P2 are joined to the body of the cone
along hinge lines, which we will call H1 and H2, respectively.
Panel P3 emerges out of the cone and is connected to panels P1
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FIGURE 2: The developable conical mechanism. Panels Pi,
hinges Hi, and motion parameters αi are indicated.

H2 H4

H1 H3

P3

P0 P2
ba

δ

P1

ξ δ+ξx

y

z

δ+ξ+η0

FIGURE 3: The design of the developable conical mechanism in
the conformed position.

and P2 along hinge lines, which we will call H3 and H4, respec-
tively.

Choose angles δ ,ξ ∈ (0,2π) so that δ + ξ < 2π . Also
choose positive numbers z1, z2, and z3 with z1 < z2 < z3. Consid-
ering R3 with cylindrical coordinates (see Figure 3), the panels
P1 and P2 are defined by:

P1 ={(r,θ ,z) ∈ C : z1 < z < z2, 0 < θ < δ},

P2 ={(r,θ ,z) ∈ C : z2 < z < z3, ξ < θ < δ +ξ}.

Note that we can also choose an η > 0 so that δ + ξ +η < 2π .
The third panel, panel P3, which joins P1 and P2 is given by:

P3 ={(r,θ ,z) ∈ C : z1 < z < z2,δ < θ < δ +ξ +η}
∪ {(r,θ ,z) ∈ C : z2 < z < z3, δ +ξ < θ < δ +ξ +η}.

Viewing the main body of the cone P0 as fixed, the panels
P1 and P2 will rotate rigidly about their respective hinge lines H1
and H2. The angle from which the panel P1 rotates about hinge
line H1 is denoted α1, with α1 = 0 corresponding to P1 being
in the conformed position (i.e., being flush with the body of the
cone). Similarly, the angle from which the panel P2 rotates about
the hinge line H2 is denoted α2, with α2 = 0 corresponding to P2
being in the conformed position. We define the positive direction
of the angle to correspond to an initial outward movement. We
desire to find a relationship between α1 and α2 so that we can
ensure that the rigid motion of panels P1 and P2 will admit a rigid
motion for P3 so that P3 remains joined to P1 and P2 along the
hinge lines H3 and H4.

Because the position of panel P1 in R3 depends on α1, we
refer to the image of P1 in R3 resulting from a rotation of α1 as
P1[α1]. The image of P2 resulting from a rotation of α2 is denoted
as P2[α2]. Similarly, the image of the hinge lines H3 and H4 in R3,
with respect to the angles on which they depend, will be denoted
H3[α1] and H4[α2], respectively.

We can now clearly see that the developable conical mecha-
nism is a spherical mechanism. A spherical mechanism consists
of bars linked at hinge joints whose hinge lines all intersect at a
point. The conical reference surface has ruling lines that meet at
the cone point (or apex of the cone). Because it is necessary for
the mechanism’s hinge lines to be constructed along the ruling
lines of the cone, in order to obtain motion without deformation,
and throughout the motion the hinge lines continue to meet at
the cone point, the mechanism must be a spherical mechanism
centered about the cone point (See also [6]).

2.2 Defining Points
Consider the following two points on the undeflected mech-

anism given in cylindrical coordinates:

a =[z2 tanφ ,δ ,z2],

b =[z2 tanφ ,δ +ξ ,z2].

Note that these two points lie on the hinge lines H3[0] and H4[0].
Indeed, we will be interested in the points a and b as they rotate
with the panels P1[α1] and P2[α2]. We denote these rotated points
by a[α1] and b[α2], respectively.

Converting to Cartesian coordinates, the points a[0] and b[0]
are:

a =〈z2 tanφ cosδ ,z2 tanφ sinδ ,z2〉 , (1)
b =〈z2 tanφ cos(δ +ξ ),z2 tanφ sin(δ +ξ ),z2〉 . (2)

2.3 Motion via Linear Transformation
The motion of a panel about a hinge line Hi for i = 1,2 can

be described through a series of linear transformations. The com-
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position of the following transformations will provide the trans-
formations that describe the motion of panel Pi so that we can
determine Pi[α1]:

I. The first transformation moves hinge line Hi to the xz-plane
by a clockwise rotation by an angle ω about the z-axis:

A0(ω) =

 cosω sinω 0
−sinω cosω 0

0 0 1

 . (3)

II. Next, we move the image of hinge line Hi to the z-axis by a
clockwise rotation of the cone angle φ about the y-axis:

A1(φ) =

cosφ 0 −sinφ

0 1 0
sinφ 0 cosφ

 . (4)

III. This next rotation about the z-axis by an angle αi is the key
transformation. Having applied the transformations A0(ω)
and A1(φ), the image of the hinge line Hi now lies on the
z-axis. Hence, the rotation of panel Pi about the hinge line
Hi at this step is realized by:

A2(αi) =

 cosαi sinαi 0
−sinαi cosαi 0

0 0 1

 . (5)

IV. The transformation A1(−φ) reverses the action of A1(φ):

A1(−φ) =

 cosφ 0 sinφ

0 1 0
−sinφ 0 cosφ

 . (6)

V. Finally, the transformation A0(−ω) reverses the action of
A0(ω):

A0(−ω) =

cosω −sinω 0
sinω cosω 0

0 0 1

 . (7)

We assume that the cone is initially positioned so that ω = 0
for H1 and ω = ξ for H2 (i.e. the mechanism is in its conformed
position). Composing these transformations, we define:

T1(α1) =A0(0)A1(−φ)A2(α1)A1(φ)A0(0), (8)
T2(α2) =A0(−ξ )A1(−φ)A2(α2)A1(φ)A0(ξ ). (9)

Notice that in the definitions of T1(α1) and T2(α2), we chose
the arguments of A0 to coincide with the azimuth angle of the
hinge lines H1 and H2 in cylindrical coordinates. Therefore,
Ti(αi) applied to any point has the effect of rotating that point
about the hinge line Hi for i = 1,2. Thus, it is simple to define
the motion of the panels P1 and P2 about their hinge lines:

P1[α1] =T1(α1)P1[0],
P2[α2] =T2(α2)P2[0].

Since a[α1] if a point of P1[α1] and b[α2] is a point of P2[α2]
we can write:

a[α1] =T1(α1)a[0], (10)
b[α2] =T2(α2)b[0]. (11)

3 Rigid Motion
For the developable conical mechanism to have rigid mo-

tion, panels P1 and P2 must move by a rotation about their hinge
lines H1 and H2, respectively. Our goal is to find an open inter-
val U of the real line containing 0 and a function f : U → R so
that the rigid motion of panels P1 and P2 given by P1[α1] and
P2[ f (α1)] admits a rigid motion for P3 as well.

Supposing that such a function f exists, a necessary condi-
tion for a rigid motion on panel P3 is that the distance between
points a[α1] and b[ f (α1)] remains constant as α1 varies. In fact,
as we shall see from the Rigidity Theorem in the next section,
this condition is both necessary and sufficient.

Our strategy, therefore, will be to examine the level sets of
the function D : R2→ R defined by:

D(α1,α2) = ‖a[α1]−b[α2]‖2 (12)

where a[α1] and b[α2] are given by Equations 10 and 11, which
reference Equations 1, 2, 8, 9, and then Equations 1 - 7. Then
D represents the square of the standard Euclidean norm between
a[α1] and b[α2].

Note that D(α1,α2) is dependent on the design parameters
φ , δ , ξ and z2. However, it is sufficient for our analysis to set z2 =
1. This is the case because although z2 modifies the magnitude
of the function D, it does not effect the D(0,0)-level set, which
determines possible motion paths. In other words, the movement
of two mechanism with the same design parameter, except the zi
values (i = 1,2,3), is exactly the same.

We will find that variations of the design parameters φ , δ ,
and ξ do change the D(0,0)-level set and may significantly mod-
ify the general behavior of the mechanism. When needed to fa-
cilitate the discussion of the analysis of the function, we extend
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the notation of D(α1,α2) to

D[φ ,δ ,ξ ](α1,α2).

When we use the notation D(α1,α2), we assume the values for
φ , δ and ξ are given.

The reader may note that the explicit formulas for Equations
8 - 12 become quite lengthy and challenging to analyze. Thus
we first verify the existence of a rigid motion by a theoretical
analysis. We then demonstrate how to evaluate a rigid motion
path computationally.

3.1 Existence of a Rigid Motion
First, we will prove that there exists an open interval U of the

real line containing 0 and a function f : U → R so that f (0) = 0
and D(α1, f (α1)) is constant. The reasoning here is quite easy,
as we will appeal to the Implicit Function Theorem. The explicit
form of D(α1,α2) is lengthy, but the gradient at the origin is
given by:

∇D(0,0) =

(
8z2

2 sin ξ

2 sinφ tanφ sin δ

2 sin( δ+ξ

2 )

4z2
2 sin ξ

2 sinφ tanφ

(
cos(δ + ξ

2 )− cos( ξ

2 )
)) .

To apply the Implicit Function Theorem, we must guarantee that
∇D(0,0) 6= (0,0). Both components of ∇D(0,0) are a product of
several factors. We will simply show that all factors are nonzero.

z2 6= 0 because we chose it to be positive.
Since 0 < ξ < 2π , we have sin ξ

2 6= 0.
Since 0 < φ < π/2, we have sinφ 6= 0 and tanφ 6= 0.
Showing that

cos
(

δ +
ξ

2

)
− cos

ξ

2
6= 0

requires some work. We will prove by contradiction. Sup-
posing that equality holds and applying the angle addition
formula for cosine gives us

cosδ cos
ξ

2
− sinδ sin

ξ

2
− cos

ξ

2
= 0.

Rearranging terms gives us

cosδ −1
sinδ

= tan
ξ

2
.

Applying the half angle identity for tangent, we are left with

tan
(
−δ

2

)
= tan

ξ

2
.

This means that δ

2 + ξ

2 = nπ for some integer n, or

ξ +δ = 2nπ.

But we have chosen ξ and δ so that 0 < ξ +δ < 2π . So this
is a contradiction. Thus,

cos
(

δ +
ξ

2

)
− cos

ξ

2
6= 0.

Since none of the factors in the first component of ∇D(0,0) are
equal to zero,

∇D(0,0) 6= (0,0).

The Implicit Function Theorem tells us that there is an open inter-
val U ⊂R containing 0 and a function f : U→R so that f (0) = 0
and D(α1, f (α1)) is constant for all α1 ∈U . We can now con-
clude that there exists some rigid motion of the mechanism.

3.2 Solving for the Motion Path
Because of its non-constructive nature, the Implicit Func-

tion Theorem does not specify the rigid motion. However, the
rigid motion can be described by a level set that is determined
explicitly as the solution to a differential equation. For the pur-
poses of setting up and solving this differential equation, we will
write both α1 and α2 as functions of another parameter t, and use
the function r : R→ R2 defined by:

r(t) = (α1(t),α2(t)).

The differential equation whose solution traces out the level
curve is the so-called gradient equation. It is given by:

∇D(α1,α2) · r′(t) = 0,

with the initial value

r(0) = (0,0).

5 Copyright c© 2020 by ASME



This is a nonlinear ordinary differential equation which is under-
determined because we have just one equation with two unknown
functions, α1(t) and α2(t). We can remedy this by setting:

α1(t) = t.

Thus, we are left to solve:

Dα1(t,α2(t))+Dα2(t,α2(t))α ′2(t) = 0

or

α
′
2(t) =−

Dα1(t,α2(t))
Dα2(t,α2(t))

. (13)

Equation 13 can be expanded by referencing Equation 12, sub-
stituting in the explicit forms of equations 10 and 11, and taking
the appropriate partial derivatives. However, the expanded form
is quite lengthy, so we leave it in symbolic form.

We illustrate graphs of the D(α1,α2) for several variations
of the design parameters δ , ξ , and ψ in Figures 4 and 5. Note
that D(0,0) is the functional value of D when the conical mecha-
nism is in its conformed position. The curves indicated within the
graphs are the D(0,0)-level curves (i.e. the set of points for which
D(α1,α2)=D(0,0)) and are obtained by numerically solving the
differential equation, Equation 13, for α2(t) and then plotting the
collection of points (t,α2(t)).

As illustrated in Figure 6, there are multiple possible paths
that are connected to the origin. In the next section, we verify
that these parameter functions are sufficient to define a rigid mo-
tion. It is clear that the relationship between the parameter func-
tions α1 and α2 is necessary. To see an animation of how pan-
els move on these paths, refer to the following link: https:
//www.youtube.com/watch?v=pydiO4PRjDw.

3.3 Observational Analysis
Considering Figure 6, note that in all cases there is a class of

upward slanting curves which represent motion in which α1 and
α2 are increasing at nearly the same rate. We will refer to these
curves as the E -curves. The other curves we will refer to as the
D-curves. Note that the origin is contained in a D-curve in each
case.

The points where two motion curves intersect are called
bifurcation points, and correspond to the change points of the
mechanism. A bifurcation point represents a point in the motion
in which there is more that one possible continuation of the mo-
tion, other than reversing the motion. For planar lamina emergent
mechanisms, there must be a bifurcation point corresponding to
when the mechanism is in its conformed position [7]. However,

for this developable conical mechanism, such is not the case. The
conformed position generally does not correspond to a bifurca-
tion point, as illustrated in Figure 6. Indeed, when δ 6= ξ , the bi-
furcation points occur when the hinge lines lie in a single plane
(see [10]), which is not the case in the conformed position. How-
ever, suppose δ = ξ . In the case that α1 = α2 = 0 (the conformed
position), we note that H2 and H3 are colinear and P2 and P3 can
rotate freely about this axis while holding P1 fixed. Likewise, in
the case that α1 = α2 = π , we note that H1 and H4 are colinear
and P1 and P3 can rotate freely about this axis while holding P2
fixed.

When δ 6= ξ , the bifurcation points arise only from the inter-
section of E -curves with D-curves. However, when δ = ξ bifur-
cation points may also arise from the intersection of D-curves.
We will refer to a bifurcation point that is the intersection of an
E -curve with a D-curve as an ordinary bifurcation point and a
bifurcation point that is the intersection of two D-curves as an
extraordinary bifurcation point. At ordinary bifurcation points,
the hinge lines are coplanar but not colinear. At extraordinary bi-
furcation points, the hinge lines are coplanar and a pair of hinge
lines, H2 and H3 or H1 and H4, is colinear.

To understand the transition of the shapes of the D-curves
as δ changes size in comparison to ξ , note that when δ = ξ , the
D-curves can be represented as a set of vertical and horizontal
lines. Thus the region of space near an extraordinary bifurca-
tion point is divided into four quadrants. When δ decreases away
from ξ , the D-curves break into two continuous curves: one in
the first quadrant and one in the third quadrant. Likewise, when
δ increases away from ξ , the D-curves break into two contin-
uous curves: one in the second quadrant and one in the fourth
quadrant.

3.3.1 Initial Motion The compact nature of the devel-
opable conical mechanism is achieved when the mechanism is
in its conformed position. As such it is important to consider the
initial motion of the mechanism, or the motion as the mecha-
nism moves from the conformed position. Greenwood described
three behaviors (intramobility, extramobility, and transmobility)
that characterize the motion of developable mechanisms as they
move from their conformed position. Graphical methods exist for
predicting these behaviors for regular cylindrical [5] and coni-
cal [6] developable mechanisms. We also note that as a change
point mechanisms there are two possible configurations, open
and crossed, and that the conformed position represents a crossed
configuration (see [7]).

We provide an analytical perspective for regular conical de-
velopable mechanisms. Note that if all panels start in the con-
formed position, the initial motion must be defined by a path that
moves along a D-curve. The initial direction of the D-curve de-
pends on the relative sizes of δ and ξ , as follows:
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FIGURE 4: Plots of the function D(α1,α2) for φ = π

3 and differing δ and ξ values. The level curves D(α1,α2) = D(0,0) are also
indicated.
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FIGURE 5: Plots of the function D(α1,α2) for φ = π

6 and differing δ and ξ values. The level curves D(α1,α2) = D(0,0) are also
indicated.
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If δ < ξ , we observe that when α1 is initially increasing,
then α2 is initially increasing (see Figure 6A). Hence, if
panel P1 is initially moving outward, then panel P2 must
be initially moving inward, and vice versa. Greenwood et.
al. [5] refers to this type of behavior as transmobile.

If δ = ξ , recall that this is the case where H2 and H3 are
colinear in the conformed position. Thus, panel P1 must ini-
tially be kept fixed while panel P2 moves in either direction
(see Figure 6B).

If δ > ξ , we observe that both panels initially move in the
same direction, but P1 moves at a slower rate than P2 (see
Figure 6C). This behavior is called intramobile if the motion
is towards the interior of the surface and extramobile if the
motion is towards the exterior of the surface [5].

3.3.2 Bifurcation Points The characteristics of the
possible continued motions at a bifurcation point also depend on
the relative sizes of δ and ξ . At a bifurcation point:

If δ < ξ , we observe that it is possible to move panels P1 and
P2 in the same direction by continuing the motion along an
E -curve, or in a different direction by continuing the motion
along a D-curve. In this case, all bifurcation points are or-
dinary. The set of bifurcation points connected to the origin
is periodic in one direction. There are an infinite number of
parallel sets.

If δ = ξ , we observe that at an ordinary bifurcation point
there is a choice to keep one panel, P1 or P2, fixed while
moving the other, or to keep both panels in motion at nearly
the same rate. At an extraordinary bifurcation point, only
one panel can be put in motion while fixing the other, but
either panel can be selected to be put in motion. In this case,
all bifurcation points are connected to the origin. Both the
set of ordinary bifurcation points and the set of extraordinary
bifurcation points each form an array that is periodic in two
directions.

If δ > ξ , we observe that both panels P1 and P2 must con-
tinue to move in the same direction. However, there are two
possible rates at which this occurs. In this case, all bifurca-
tion points are ordinary and connected to the origin. They
form an array that is periodic in two directions.

The existence of the bifurcation points lead to unbounded
motion paths in the α1α2-plane. When δ < ξ , the bifurcation
points are periodic in two directions and all bifurcation points are
connected to the origin. Each E -curve intersects each D-curve at
precisely one point. When δ > ξ , the bifurcation points form
parallel sets with an infinite number of points in each set. The
parallel sets consist of the intersection points of a single E -curve

(a) δ < ξ

(b) δ = ξ

(c) δ > ξ

FIGURE 6: The characteristics of the paths of motion depending
on the relative sizes of ξ and δ .
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with a single D-curve. Only one parallel set of bifurcation points
contain points connected to the origin. There is a one-to-one cor-
respondence between the E -curves and D-curves that intersect.

Note that, by design, our developable conical mechanism is
a parallelogram linkage, a special-case Grashof mechanism. For
modifications of our design that do not result in parallelogram
linkage, see [6]. For these more generally designed mechanisms,
the existence and types of bifurcation points in the motion will
depend on whether or not they are Grashof mechanisms.

4 The Rigid Transformation
In this section, we define the rigid motion that acts on

the developable conical four-bar mechanism. The rigid motion
T : R3×R→ R3 is piecewise defined as follows:

Recall that T1(t), T2(t), a, and b were defined in Section 2 by
Equations 1, 2, 8, 9. We define T to be:

T (t)x =


x, if x ∈ P0
T ∗1 (t)x, if x ∈ P1
T ∗2 (t)x, if x ∈ P2
T ∗3 (t)x, if x ∈ P3

(14)

where

T ∗1 (t) = T1(t) and T ∗2 (t) = T2(α(t)).

To define T ∗3 (t), let c = a×b. Note that {a,b,c} form a basis for
R3. Then each point x ∈ R3 can be written as:

x = kaa+ kbb+ kcc

where ka, kb, and kc are a unique set of constants. We define
T ∗3 (t) : R3→ R3 by

T ∗3 (t)x = kaT ∗1 (t)a+ kbT ∗2 (t)b+ kc[T ∗1 (t)a×T ∗2 (t)b].

Theorem 1. T (t) defines a rigid motion.

Proof. To see that T (t) is well-defined, first note that by con-
struction T ∗1 (t) and T ∗2 (t) are the identity on hinge lines H1 and
H2, respectively. Thus, the mapping T (t) is well-defined on the
points of P0 intersecting P1 or P2. Next, we need to verify that
T ∗3 (t) is consistent with T ∗1 (t) and T ∗2 (t) on hinge lines H3 and
H4, respectively. Note that:

1. If x ∈ H3, then x = kaa. Thus T ∗3 (t)x = kaT ∗1 (t)a =
T ∗1 (t)(kaa) = T ∗1 (t)x. Hence

T ∗3 (t)x = T ∗1 (t)x.

2. If x ∈ H2, then x = kbb. Thus T ∗3 (t)x = kbT ∗2 (t)b =
T ∗2 (t)(kbb) = T ∗2 (t)x. Hence

T ∗3 (t)x = T ∗2 (t)x.

Thus we have the desired result. Therefore T (t) is well-defined.
It is now clear from the definition of T ∗3 (t) and using the

substitutions

T ∗3 (t)a =T ∗1 (t)a
T ∗3 (t)b =T2(t)b
T ∗3 (t)c =T ∗1 (t)a×T ∗2 (t)b,

that for x = kaa+ kbb+ kcc ∈ R3,

T ∗3 (t)x = kaT ∗3 (t)a+ kbT ∗3 (t)b+ kcT ∗3 (t)c. (15)

Using the identity given in Equation 15, the fact that T ∗3 is a linear
transformation is a straightforward verification. In particular, for
constants λ1 and λ2 and vectors

x1 =ka1a+ kb1b+ kc1c
x2 =ka2a+ kb2b+ kc2c,

we can immediately verify that

T ∗3 (t)(λ1x1 +λ2x2) = λ1T ∗3 (t)x1 +λ2T ∗3 (t)x2.

By construction, T ∗1 (t) and T ∗2 (t) are orthogonal transforma-
tions. To see that T ∗3 (t) is an orthogonal transformation, note that
by design, the distance between T ∗1 (t)a and T ∗2 (t)b remains con-
stant as t varies. Thus, for all t, the triangle with vertices 0, a,
and b is congruent to the triangle with vertices T (t)0, T (t)a, and
T (t)b. Hence, T ∗3 (t)c = T ∗1 (t)a×T ∗2 (t)b has constant magnitude
and is perpendicular to both T ∗1 (t)a and T ∗2 (t)b throughout the
motion. This means the tetrahedron with vertices 0, a, b, and
c is congruent to the tetrahedron with vertices T ∗3 (t)0, T ∗3 (t)a,
T ∗3 (t)b, and T ∗3 (t)c. Thus, it must be the case that T ∗3 (t) is an or-
thogonal transformation. Therefore T (t) defines a rigid motion.

Note that the argument above does not depend on C being a
circular cone, nor that a and b have the same z-coordinate. It is
only required that T ∗1 (t) and T ∗2 (t) are orthogonal transforms and
that the distance between T ∗1 (t)a and T ∗2 (t)b is constant through-
out the motion. Thus, we can summarize these results by the fol-
lowing theorem.
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Theorem 2. Suppose C is a generalized cone in R3 with cone
point at 0 and a developable conical mechanism is constructed
on C, similarly as in Figure 2, with hinge lines H1, H2, H3, and
H4 passing through the origin. Let a and b be points distinct from
the origin on the hinge lines H3 and H4, respectively. If there are
linear transformation paths T ∗1 (t) and T ∗2 (t) acting on panels
P1 and P2, respectively, so that the distance between T ∗1 (t)a and
T ∗2 (t)b are constant as t varies, then the motion defined by (14)
is a rigid motion.

5 Conclusion
In this paper we have demonstrated that developable coni-

cal mechanisms, as designed here, have rigid motion. We have
also demonstrated how to analytically determine that motion and
have provided general descriptions of the motion. The relation-
ship between variables δ and ξ determines the motion of the
mechanism with respect to the conical reference surface and pre-
dicts the behaviors (intramobile, extramobile, transmobile) the
mechanism can exhibit. Furthermore, we proved that a conical
four-bar mechanism constructed on a generalized cone has rigid
motion provided that a motion can be found that preserves the
distance between any two distinct points, one on each of hinge
lines H3 and H4.
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