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Abstract
Arrhythmias can be lethal for children in the period following car-

diac surgery, and junctional ectopic tachycardia (JET) is considered
the most common type of tachycardia seen during early post-operative
care. We present a novel classification algorithm that detects the JET
onset based on electrocardiogram (ECG) waveforms. Our algorithm
obtains an average cross-validation sensitivity of 87.07%, specificity
of 87.12% and area under the receiver operating charactieristic curve
(AUROC) of 90.71% on a dataset of 9 patients from Texas Children’s
Hospital. In addition, we present a “human in loop” development
pipeline by creating a novel waveform visualization system. This
pipeline will enable cardiac surgeons to better recognize and label
arrhythmia onset.

1 Introduction

Congenital heart diseases are among the most common birth defects,
affecting ∼1% of live births in the United States [1]. Of the post-operative
pediatric cardiac patients, up to 48% develop post-operative arrhythmias
[2]. Current arrhythmia detection algorithms are based on electrocardiogram
(ECG) waveforms and result in a staggering number of false alarms (∼72-
99% of clinical alarms are false [3]). Junctional ectopic tachycardia (JET)
is considered the most common type of tachycardia seen during early post-
operative care [2] and is very dangerous and difficult to treat in an infant
heart [4].
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In this paper, we present a novel JET detection algorithm. In this section,
we provide a brief overview of cardiac physiology, cardiac monitoring wave-
forms, junctional rhythms, junctional ectopic tachycardia, and the current
state of alarm fatigue. We will then conclude this section with our precise
problem definition.

1.1 Cardiac Physiology

The movement of blood throughout the heart is dependant on muscle
contractions governed by electrical signals. These signals start in a small
region in the right atrium called the Sinoatrial (SA) node (Refer to Figure 1
for a depiction of heart anatomy). Firing of the SA node stimulates the right
and left atria to contract, opening the passageway for blood to flow down into
the ventricles. Then, the signal arrives at another small region between the
atria and the ventricles called the Atrioventricular (AV) node. The electric
signal travels down the heart via specialized cardiac cells and starts spreading
all over the right and left ventricles. This causes the ventricles to contract,
pushing the blood out of the heart. For a healthy heart, the natural cycle
of electrical activity is called the sinus rhythm (which can be seen as an
electrical waveform in Figure 2). An arrhythmia is a deviation from the
sinus rhythm, causing an irregular heartbeat.

Figure 1: Basic heart anatomy [5].

2



1.2 Cardiac Monitoring Waveforms

Electrocardiogram The electrocardiogram (ECG) measures the electrical
activity of the heart, and measurements are obtained by electrodes
which are placed on a patient’s chest. Every electrode is called a lead
and records the voltage signal on the body surface. Each lead forms a
separate channel in the ECG waveform. There are several standards
for ECG recording, and each standard determines the number of leads
and their placement. The 12-lead ECG is the most commonly used
standard [6], while health gadgets and smartphones use less rigorous
methods. The ECG waveform can be divided into modes called P, Q,
R, S & T (Figure 2), each of which represent a different portion of
the electrical activity of the heart. Due to physical movements and
interference from other signals (such as the electromyogram), the ECG
signal may contain noise artifacts.

Figure 2: An example of an ECG waveform [7].

Central Venous Pressure Central venous pressure (CVP) is the average
blood pressure measured in the superior vena cava, one of the large
vessels that returns blood from the body to the right atrium [8]. It
reflects the amount of the blood that is returned to the heart [9]. The
CVP is measured using a catheter that is placed during heart surgery.
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The CVP waveform morphology of a normal cardiac cycle is shown in
Figure 3.

The CVP is a mechanical signal; therefore, it is generally invariant to
artifacts caused by an electrical signal interference. It is transduced
as pressure readings and also used for vitals estimation. However, the
catheter is placed in body fluid, so CVP measurements can be affected
by the intermittent body fluid infusion running through the lumen of
the central line that is monitoring CVP. Pathological changes in CVP
are usually noticed as blood pressure increases at the onset of JET.
However, the morphology changes in CVP waveforms at JET onset
can vary. One of the goals of our work is to understand the transition
behaviour of the blood pressure with respect to JET.

Figure 3: An example of an CVP waveform [10].

1.3 Junctional Rhythms

The electrical activity of the heart is measured through the ECG signal
(Section 1.2). This signal is periodic in nature and contains waves that
correspond to specific electrical activities in the heart (Figure 2). The P
wave is the part of the waveform that corresponds to the firing of the SA
node (the first electrical firing of a normal heart beat). A junctional rhythm
is characterized by the absence of the P wave in the ECG signal. During a
junctional rhythm, the AV node starts the electrical firing while the SA node
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fires later, causing the P wave to become absorbed into the R wave (Figure
4).

Figure 4: In junctional rhythms, the P wave gets absorbed into the R wave.

1.4 Junctional Ectopic Tachycardia

Any change in a regular heartbeat can be considered an arrhythmia (Sec-
tion 1.1). Arrhythmias can be fatal in post-operative children; thus, accurate
detection of such arrhythmias is absolutely imperative [11]. Tachycardia is
an arrhytmia characterized by a fast heart beat [12]. Tachycardias are es-
pecially dangerous for post-operative children, as their hearts are already
under stress following the surgery [4]. The most common post-operative
tachycardia, seen in ∼2-11.2% of post-operative pediatric cardiac patients, is
called Junctional Ectopic Tachycardia (JET) [2]. It is characterized by both
a junctional rhythm (Section 1.3) and tachycardia.

JET is caused in post-operative patients by inflammation and swelling in
the area around the AV node [4]. A source near the AV node begins firing
electricity rapidly, causing a dramatic increase in heart rate (in infants, the
heart rate may become as fast as 250-350 beats per minute). This puts the
infants at severe risk for congestive heart failure. Thus, immediate medical
intervention is needed to decrease the heart rate.
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1.5 Alarm Fatigue

In most hospitals, there are alarm systems that monitor patients’ car-
diac waveforms and notify doctors when heart abnormalities are detected.
However, these alarm systems are not completely precise and often set off
many false alarms. The joint commission determined that 85-99% of alarms
created by these systems are actually false alarms [3]. In fact, doctors and
patients hear so many alarms that they are often turned off, a practice that
is incredibly dangerous for the patients. Better detection methods would
eliminate this “alarm fatigue”, thus giving patients better care.

1.6 Problem Definition

Failure to intervene within three minutes of JET onset can prove fatal for
post-operative infants. Current detection systems are imprecise and result
in too many false alarms. Currently, in order to detect JET, a pediatric
cardiologist must recognize it from a noisy ECG signal while monitoring
many patients’ signals at once. To aid pediatric cardiologists, we aim to
build a model that will detect the onset of JET within a 30 second window.
Our model will take into account the presence (or lack thereof) of P waves in
the ECG morphology and the CVP waveform. To the best of our knowledge,
we are the first to incorporate signals other than ECG into a JET detection
system. We believe that multimodal JET detection will be more robust
compared to current systems which utilize only ECG.

2 Literature Review

Arrhythmia detection from ECG signals has been a topic of research for
many years. However, past works have not incorporated other signals, so our
review focuses on methods that use only ECG signals.

Older algorithms used feature extraction, selection, reduction, signal pro-
cessing and hand-engineered heuristics. Because these methods showed a
substantial amount of misdiagnosis, recent research has focused on using
more complex machine learning algorithms. In 2016, Luz et al. concluded
that the most popular algorithms for cardiac arrhythmia detection were sup-
port vector machines (SVMs), artificial neural networks (ANNs), linear dis-
criminants (LD) and Reservoir Computing With Logistic Regression (RC).
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A more in-depth review of these approaches can be found in [13]. To com-
plement their work, we review models created since 2016.

Rajpurkar et al. [14] trained a convolutional neural network (CNN) on
ECG readings of about 54,000 patients. Their goal was to classify arrhyth-
mias into 12 rhythm classes. Their model outperformed a team of trained
cardiologists on both precision and recall. Similarly, Isin et al. [15] achieved
a 98.51% accuracy on three cardiac conditions using only ECG waveforms.
For their model, they used AlexNet as a feature extractor and then cascaded
these features into a conventional CNN. Rajput et al. [16] filtered, segmented,
and used Morlet wavelet and short-time Fourier transforms to preprocess the
ECG signals before they were passed to a CNN. Their model outperformed
cardiologists on 9/10 arrhythmias using the F1-score metric. [17] used no
preprocessing and combined a CNN and LSTM to predict atrial fibrillation
with a 83% F-score. [18] used wavelets and a LSTM to get near 99% accu-
racy on a dataset containing 6 different kinds of arrhythmias, outperforming
previous work.

In addition to general arrhythmia detection research, there has also been
research focusing on P wave detection. [19] used an extended Kalman fil-
ter to estimate the state variables of the equations modelling the dynam-
ics of the ECG signal. They were able to achieve 98.38% sensitivity and
96.75% precision on MIT-BIH Arrhythmia database from PhysioNet. On
the same database, [20] used a method “based on two moving average filters,
followed by a dynamic event-related threshold” and achieved 98.0.5% sen-
sitivity and 97.11% precision. [21] used phase free stationary wavelets and
achieved a -0.32± 12.41 ms error when compared to manual annotations on
the QT database from PhysioNet. On the PTB database from PhysioNet,
[22] achieved 97.78% sensitivity and 96.8% precision using slope detection in
FPGAs. [23] achieved 96.47% sensitivity on the CSE database by removing
the QRS complex (the combination of the Q, R, and S waves) from the sig-
nal, combining the signal from all leads, applying Teager Energy Operator
and then thresholding. In all of the above mentioned research papers on P
wave detection, the authors focused on sensitivity and precision instead of
specificity as true positives are more valuable to doctors than true negatives.
In contrast, we include specificity in our results as we aim to minimize false
alarm rates in addition to maximizing true positives. Although all of these P
wave detectors work well, our main goal is to build an arrhythmia detector,
not a P wave detector. We include their research here as a proof of concept
that creating a JET detection algorithm is feasible.
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3 Data

We use a dataset that was gathered by Texas Children’s Hospital at the
Texas Medical Center in Houston, TX, using the Sickbay platform. It consists
of about 1190 hours of signals from nine post-cardiac surgery children who
developed JET. Every patient’s recording lasts for approximately eight days
and contains one instance of JET that starts about 72 hours in and lasts for
4-53 minutes.

Each recording is split into four hour time chunks. All chunks contain
signals that have been synchronized, normalized, coded and de-indentified.
Each signal corresponds to a channel as follows:

1. Four channels of ECG signals collected from four leads. All ECG signals
are measured at 240 Hz;

2. A channel containing the CVP waveform, measured at 120 Hz;

3. A corresponding time channel.

Our dataset is missing a large amount of CVP data. The signal is com-
pletely missing for Patient 4 and in other patients is only missing for specific
time chunks (Table 3). In our models that incorporate the CVP signal, we
only train on the time chunks where it is present. We do not have any missing
values for the ECG or time channels.

1 2 3 4 5 6 7 8 9
CVP 100% 53% 74% 0% 91% 67% 25% 96% 44%

Table 1: This table contains the percentage of available CVP data for each
patient (enumerated along the top row.

The labels for our dataset were generated by timestamps given to us by
medical professionals. As 1190 hours of data is impossible to completely label,
we only received one pair of starting and ending timestamps for both JET
and a normal heart beat rhythm for each patient. This lead to a massively
unlabelled dataset with only 1.6% of the time indices being labelled. Of this
labelled data, 27.5% of it was labelled JET and the other 72.5% was labelled
non-JET. To help mitigate this data labelling problem in the future, we
created a data visualization and annotation tool that we present in Section
5.3.
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4 Data Preprocessing

4.1 Corrupted Data Rejection

When leads are not attached to the patient, abnormal signal patterns
arise. In particular, ECG measurements either remain constant at extremely
low values or oscillate back and forth between these low values and the values
we commonly see when the leads are attached. To identify these instances,
we segmented the ECG data into 10-second windows and found all windows
in which ECG remained constant. These constant values were classified as
corrupted, and all windows containing these corrupted values were discarded
(Figure 5).

Figure 5: An example of corrupted data that was rejected in Patient 3.
The red box is where our corrupt data rejection algorithm determined the
corrupted data to be.

4.2 Frequency Filtering

The measuring of electrical cardiac rhythms can be confounded by other
general body rhythms, such as the respiratory system. A general heart rate
is 0.67–5 Hz and a general QRS complex is 10–50 Hz [24, 25]. As such, we
use a 0.67 Hz high pass filter and a 50 Hz low pass filter to get rid of un-
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wanted ECG frequencies (Figure 6). For the CVP, we use a 1.5 Hz high pass
and a 50 Hz low pass filter. For reference, a high pass filter passes signals
with frequencies higher than a specific threshold and attenuates signals lower
than the threshold. In contrast, a low pass filter passes signals with frequen-
cies lower than a specific threshold and attenuates signals higher than the
threshold.

Figure 6: A subset of Patient 1’s ECG 2 signal before and after the high and
low pass filtering. Note that the filtering got rid of baseline shift. The black
line is not part of the signal, but is included for illustrative purposes.
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4.3 Abnormal Spike Removal

Part of the signals contains dramatic and noisy spikes, which can nega-
tively impact our analyses. Therefore, we detected and removed noisy spikes
in segmented 500 ms windows using a process introduced by [26]. This pro-
cess iterates as follows:

1. Find the maximum absolute amplitude (MAA) in each window.

2. If at least one MAA is more than three times the median value of all
the MAAs, continue. If not, the process is complete.

3. Set the values of the highest spike in the window containing the highest
MAA to zero. The values of the spike are determined to be from the
last zero-crossing point before the spike to the first zero-crossing point
after the spike.

4. Iterate back to Step 2.

An example of the effect of spike removal is shown in Figure 7. In Section
5, we segment this signal into cardiac cycles (also known as R-R intervals)
by detecting R peaks (R waves). Large spikes in the data will cause the R
peak detection to fail. Although zeroing out these spikes still creates artifacts
in the data, we can now perform the cardiac cycle segmentation. After we
segment the data, we stack it and perform median filtering (each cardiac
cycle is replaced by the median of its neighboring cycles, thereby smoothing
the data) on the stack, thereby eliminating the artifacts.

Figure 7: An illustration of noisy spikes that were removed.
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5 Data Exploration

5.1 Cardiac Cycle Segmentation

As JET is canonically determined by the disappearance of the P wave
in a cardiac cycle, we want to build our models on cardiac cycles. The
most natural way to segment a ECG signal into cardiac cycles is to identify
the R peaks, which are always present and clearly observable. We use the
Python waveform-database (WFDB) package to detect the R peaks in the
ECG waveform (Figure 8). We then apply a median filter and normalize
each cardiac cycle to have the same length (100 data points). This results in
cycles which are on the same time scale, allowing each sample within a cycle
to represent roughly the same part of the wave. These 100 samples, or some
combination of them, can then be used as features in a machine learning
model.

We segment the preprocessed CVP signals based on the timestamps de-
termined by the ECG R-R intervals. We then applied the same median
filtering and normalization techniques used on the ECG cycles to the CVP
cycles. Because the CVP is recorded at half the frequency of the ECG, each
cardiac cycle was normalized to have 50 data points.

Figure 8: An illustration of R peak detection algorithm.
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5.2 Cardiac Cycle Visualization

As each patient has a unique morphology, understanding how a patient’s
morphology has changed over time is essential to a clinician’s ability to visu-
ally detect JET. The classical 2D visualization of a cardiac waveform can only
display a few cardiac cycles at once; therefore, it is not a good representation
of how the waveform changes over long periods of time. Consequently, we
built a 3D visualization of the cardiac waveforms. Our visualization stacks
many cardiac cycles together, showing hours of data at once, thereby allowing
for easy detection of morphological changes (Figure 9).

Figure 9: 3D Visualizations of JET onsets in a ECG waveform (left) and a
CVP waveform (right). In the ECG waveform, one can easily see the P wave
disappear and the height of the R peak increase in the ECG waveform. The
P wave conjoining with the R wave is expected clinically for JET, as the
electrical signal from the SA node is being masked by the signal from the
AV node. The CVP waveform clearly shows the appearance of the cannon
A wave in the CVP waveform following the onset of JET.

5.3 T-SNE Annotation Tool

As detailed in Section 3, it is impossible for a clinician to adequately label
a large amount of cardiac waveform data. To help, we built a t-Distributed
Stochastic Neighbor Embedding (t-SNE) annotation tool. T-SNE is a dimen-
sionality reduction technique that works well for high dimensional visualiza-
tion [27]. In brief, t-SNE creates a probability distribution using the Gaus-
sian distribution to define relationships between points in a high-dimensional
space. It then uses a Student t-distribution to recreate this relationships in a
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low-dimensional space. It optimizes these relationship embeddings through
gradient descent.

In Figure 10, we used t-SNE to cluster stacks of cardiac cycles. When
one clicks on a data point in the cluster, it will bring up another window
that one can use to label that cluster.

Figure 10: Example of a what would happen when one clicks on a point in a
t-SNE clustering of ECG stacks of cardiac cycles. The coloring is based on
heart rate, demonstrating that t-SNE seemed to cluster by heart rate in some
instances. This is interesting as heart rate was not provided to the algorithm.
Additionally, the cardiac cycles were normalized to the same length so the
heart rate could not be computed by the algorithm.

6 Modeling

6.1 Supervised Classification Models

6.1.1 Convolutional Neural Network

As all current state-of-the-art arrhythmia detection models use CNNs on
ECG signals (Section 2), we first experiment with a CNN on only ECG data.
Following with the literature, we only train and test on the ECG 2 signal (the
canonical signal used by doctors to detect arrhythmias as it shows the most
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interpretable ECG morphology). We built a simple CNN with the following
specifications:

1. The network has 4 convolutional layers followed by a fully-connected
layer.

2. Each convolutional layer was followed by batch normalization and a
ReLU activation, following best practices.

3. The fully-connected layer was followed by a softmax to prepare the
outputs for our binary cross entropy loss (each output represents the
probability that the dat point is either JET or non-JET).

4. We used a filter size of 2, a stride of 1 and no padding for simplicity.

5. The output dimensions of each respective layer were 128, 64, 32, 16,
and 2. We chose layer sizes that were multiples of 2 for best practices
and used a final layer size of 2 as we are doing binary classification.

6. We trained the network using a batch size of 128, the Adam Optimizer,
and a learning rate of 0.001 for 50 epochs.

Although this is not a state-of-the-art CNN implementation, it is a simple
one that follows best practices. It served as a proof of concept of whether
or not CNNs could learn to predict the presence of JET. As will soon be
discussed, the CNN was completely unable to generalize to new patients due
to intrinsic limitations of CNNs. As such, we did not fine-tune our model to
have the “best” implementation.

To fully utilize the convolutions in the CNN, we created a new dataset
where each data point is a stack of 5 consecutive ECG 2 R-R intervals. We
classified a stack as JET if at least one R-R interval in that stack was labelled
JET. As the clinicians we were working with told us that JET only occurred
once for each patient and as CNNs work best when given a large amount
of data, we classified the 98.4% of our unlabelled data as non-JET. This
created a highly unbalanced dataset. To help with this unbalanced nature
of our dataset, we used a sliding window of 5 for each instance of JET and a
non-sliding window of 5 for each instance of non-JET. Additionally, we built
a data loader sampler so that each batch size was balanced by both class
and patient, essentially randomly undersampling the majority class at each
epoch.
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Method Sensitivity Specificity AUROC
CNN 96.37% 99.75% 98.06%

Table 2: The results of our CNN on a random 70/30 train/test split of all
patients’ ECG 2 data.

We tested the CNN on a random 70/30 train/test split of all of the en-
tire dataset and got fairly good results (Table 2). But the CNN could not
generalize to new patients. We trained the network on every combination of
8 patients and tested on the remaining patient and in each case, the network
got 0% specificity. We believe this is due to the fact that morphologies vary
greatly across patients (Figure 11), and we only trained on a few patient
morphologies.

Figure 11: This figure shows the variations that can exist across patient
morphologies. On top are the CVP morphologies for Patients 1 and 7. On
bottom are the JET ECG morphologies for Patients 1 and 7.
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6.1.2 Decision Trees

To assess the impact of CVP data on JET detection, two random forest
models were trained: one that is trained on ECG data only and one that uses
both ECG and CVP data. Random forest models are easier to interpret than
CNNs, and they quantify the “importance” of each feature, making it easy
to determine the effect of CVP. We balanced the classes by a method known
as Synthetic Minority Over-Sampling Technique (SMOTE) that oversamples
the minority class and undersamples the majority class [28]. We trained both
models on patients 1, 7, and 9 (those for which the necessary CVP data was
available) and used a 70/30 train/test split. We also trained two gradient
boosting models using this same process. The results are displayed below
(Table 3).

Method Signals Sensitivity Specificity AUROC
Random Forest ECG 99.99% 99.92% 99.90%
Random Forest ECG and CVP 99.99% 99.93% 99.91%

Gradient Boosting ECG 99.19% 98.97% 98.10%
Gradient Boosting ECG and CVP 99.50% 99.12% 98.31%

Table 3: The results of our supervised classification methods on a random
70/30 train/test split on patients with clear CVP signals. To make a fair
comparison between ECG and ECG+CVP results, only Patients 1, 7, and 9
are used in this table.

The integration of CVP into the models helped improve their perfor-
mance, but the model that uses ECG data performs quite well to begin
with. However, same as the CNN, these models fail to generalize to different
patients. When random forest and gradient boosting models are tested on
patients that were not used in training, the models tend to classify all cycles
into non-JET. In order to build a model which generalizes to new patients,
more careful feature extraction is needed.

6.2 Semi-Supervised Classification Model

To better deal with variability among patient morphologies we would like
to apply an unsupervised feature extraction method to the data before it is
passed through a supervised algorithm. Using feature extraction to reduce
dimensionality has been shown to be a successful approach in data science.
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Feature extraction methods were applied to ECG signals to detect the po-
sition and/or the amplitude of the QRS complex, e.g. wavelet analysis and
thresholding [29]. Such methods are usually deployed to parameterize ECG
signals so that other algorithms can be used to process parameterized ECG
instead of the signal itself. One of the problems with current parameteri-
zation methods is their interpretability. Interpretability is a crucial factor
in medical applications as both doctors and patients want to know why the
algorithm chose the answer that it chose. We propose Morphological Param-
eterization (MorPa), inspired by the way cardiologists interpret ECG signals,
to address this issue.

6.2.1 MorPa Assumptions

In this method, we use the ECG 2 signal segmented into cardiac cycles
of equal length. We use prior knowledge from cardiologists to model ECG
signals:

x(t) = P (t) +R(t) + T (t) + b(t) + n(t)

where x is a cardiac cycle of ECG, P (t) is the P waveform of ECG signal,
R(t) and T (t), respectively, are the QRS complex and T waveforms in the
cardiac cycle, b(t) is a baseline that can be added to the ECG signal and n(t)
is the noise component. Figure 2 shows an example of this modeling.

6.2.2 Convex Baseline Removal

A good way to extract a low pass component of x(t) which acts as the
baseline, is solving this optimization problem:

y = arg min ||Dy||22 + λ′||x− y||22

where D is the derivative matrix (i.e Dx = x[n]−x[n− 1]). In order to solve
this problem, we will write it as:

min (Dy)T (Dy) + λ′(x− y)T (x− y).

Setting the gradient with respect to y to zero, we can solve it and find the
minimum without any iterative method.

(DTD + λ′I)y = λ′x
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→ y = λ′(DTD + λ′I)−1x := Hx

We must calculate H one time and then we can store it and use it for every
cardiac cycle that we want to process. If we want to improve this baseline
extraction algorithm, we can use Lasso for y − x to impose sparsity on it
(using the L1 norm for y−x instead of the L2 norm), but doing so will make
the algorithm slow and computationally expensive.

6.2.3 MorPa

MorPa aims to generate an ECG cardiac cycle that resembles a real car-
diac cycle. Once we generate a signal similar to the given ECG signal, the
parameters that led to generation of that signal are used as the extracted
parameters of the given cardiac cycle.

We used the following model to generate cardiac cycles:

x(t) = CPP
∗(
t− θP
γP

) + CRR
∗(
t− θR
γR

) + CTT
∗(
t− θT
γT

)

where P ∗, R∗, T ∗ are template waveforms for the P,Q, R, S and T waveforms,
C is amplitude, θ is time positioning and γ is time scaling. We could also
have a set of different templates for P, R, and T and could even modify these
templates in order to have an adaptive algorithm.

We use singleMorPa to generate the most similar cardiac cycle to a given
cardiac cycle.

6.2.4 SingleMorPa

Finding the Best Coefficients First we solve the problem:

[B,C] = arg min ||b+ cM(t)− x(t)||22

where x(t) is a given signal with the length L and M(t) is a template
with the same length L.

We define the inner product of two signals as< a(t), b(t) >=
∑L

t=0 a(t)b(t).
We can then re-write the problem as:

arg min < b+ cM(t)− x(t), b+ cM(t)− x(t) >
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if we set the gradient to zero, we will have:

L∑
t=0

< b+ cM(t)− x(t), 1 >= 0

L∑
t=0

< b+ cM(t)− x(t),M(t) >= 0.

Which is a system of linear equations:(
< M,M > < 1,M >
< M, 1 > < 1, 1 >

)(
c
b

)
=

(
< x,M >
< x, 1 >

)
If the determinant is non-zero, we can find b and c as:(

c
b

)
=

(
< M,M > < 1,M >
< M, 1 > < 1, 1 >

)−1(
< x,M >
< x, 1 >

)

(c, b) ≈ 1(x,M) (1)

Finding the Best Positioning and Scaling The next step would be al-
lowing the algorithm to shift the template M(t) across time and find
the optimal amount of time shifting:

(θ, γ) = arg min ||b∗(θ, γ) + c∗(θ, γ)M(
t− θ
γ

)− x(t)||22

where b∗(θ, γ) and c∗(θ, γ) are answers to Equation 1 for the signal x(t)
and template M( t−θ

γ
). This means that for each amount of θ and γ we

first marginally optimize the bias and the coefficient, and then we will
find the best θ and γ by greedy search and use b∗(θ, γ) and c∗(θ, γ).

There are some cases, however, where there are unwanted waveforms
added to the given signal (e.g. there is sometimes a specific unwanted
signal which is the result of the electrical activity of a pacemaker.)
Since the template is non-zero in a small portion of the length L (lets
say l), the algorithm is likely to find a region in the given signal that
has more energy. In contrast, we want the signal to have a similar
morphology in that region. To avoid over-attraction to regions with
more energy, we define another cost function below:
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||b∗(θ, γ) + c∗(θ, γ)M( t−θ
γ

)− x(t)||22
||x(t)||2local

where ||x(t)||2local is energy of the signal in the regions where M( t−θ
γ

) is
non-zero

||x(t)||2local =

θ+ l
γ∑

t=θ

x2(t).

This time, the algorithm is vulnerable to attraction to regions that
have a small noise that has similar morphology to the template. We
are interested in minimizing the mean squared error (MSE) and the
above cost function at the same time. So the final cost function we
want to minimize is:

(θ∗, γ∗) = arg min (1+
λ

||x(t)||2local
) ||b∗(θ, γ)+c∗(θ, γ)M(

t− θ
γ

)−x(t)||22

where λ is a hyper-parameter. The method we used to solve this min-
imization problem is a greedy search, as the cost function is highly
non-convex. It has many local minima and saddle points, and, hence,
the gradient descent family of optimization algorithms will not work.
Future work would be to find an appropriate optimization algorithm.

6.2.5 MorPa Outputs

We can now use SingleMorPa as a tool to parameterize the R, P and T
waveforms of each ECG cardiac cycle into 3 features each (C-the amplitude,
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θ-the time scaling, and λ-the time positioning), as shown in Algorithm 1.

Algorithm 1: MorPa

1 Use SingleMorPa to extract features for the R wave.
(CR, θR, γR) = SingleMorPa(x,R-template)

2 Remove the R wave.

x(θR < t < θR + l
γR

) = x(θR)
x = x−H ∗ x

3 Use SingleMorPa to extract features for the P wave.
(CP , θP , γP ) = SingleMorPa(x,P-template)

4 Remove the P wave.

x(θP < t < θP + l
γP

) = x(θP )

5 Use SingleMorPa to extract features from the T wave.
(CT , θT , γT ) = SingleMorPa(x,T-template)

6.2.6 MorPa Model Results

We trained a shallow CNN on the extracted features from MorPa (i.e. the
amplitudes, time scaling and time positioning of the P, R, and T waveforms).
The average results from a 4-fold cross-validation are shown in Table 4. From
these results we see that with MorPa involved, a CNN can now generalize to
new patients, even if it had only been trained on a few patients (in this case,
it was trained on 3 patients).

CNN with MorPa Features Signals Sensitivity Specificity AUROC
MorPa ECG 87.07% 87.12% 87.50%

Table 4: The average of a 4-fold cross-validation results for MorPa. Note
that this table presents results for generalizing to new patients, whereas the
other tables presented results for a random split on all patients.

7 Conclusion

Even though arrhythmia detection algorithms have been studied for years,
JET, despite being the most common post-operative arrhythmia, has not
been particularly targeted yet. The work we presented in this project repre-
sents a significant step in building an accurate JET detection model.
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With the pre-processed sample matrix as inputs, we built classification
models that are quite accurate within patients, obtaining AUROC of over
98%. We also integrated CVP signals, which is a novel practice in the realm
of arrhythmia detection research. Integrating the CVP signals could improve
model performance according to our preliminary tests. Though these models
failed when testing on new patients, we developed MorPa to extract a better
set of features from the ECG waveform. The MorPa features helped the
model generalize across patients, and our preliminary tests exhibited great
performance.

Besides the models we developed, we also introduced a novel visualization
method for cardiac waveforms that takes advantage of their periodical nature.
This method will enable doctors to easily access and visualize data for a long
period of time.

Finally, we also introduced an interface that enables simple labeling of
the data. With this interface, doctors can label hours of data with one click.
This interface could be combined with our algorithm to label instances that
our model is confused about, further empowering better results.

7.1 Future Plans

7.1.1 Blood Pressure Channels

The random forest and gradient boosting models showed that CVP data
has the potential to improve the detection of JET. A logical next step, then,
would be to perform feature extraction on the CVP signals and use them,
along with the features extracted by MorPa, as input into a CNN. While
MorPa itself is specific to ECG waveforms, a similar algorithm could be
developed to extract CVP features. In addition to CVP, the hospital records
arterial blood pressure (ABP). Changes in ABP can also be indicative of the
presence of an arrhythmia, so further analysis and incorporation of the ABP
data might further improve the model.

7.1.2 Expanding the Dataset

The small number of patients included in the dataset proved to be a sub-
stantial challenge in creating models that are generalizable to new patients.
Morphologies vary widely from one patient to another, so models that are
trained on only a few patients struggle to detect JET in new patients. While
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the development of MorPa helped overcome this challenge, adding more pa-
tients to the dataset is likely to improve the performance of our models.
We have requested more data from the hospital and are hoping to obtain it
shortly.

7.1.3 Human-in-the-loop Model Developments

As mentioned earlier, only a small proportion of our dataset was labeled,
but we have built a tool that enables efficient labeling of large amounts of
data. We intend to use this tool to obtain more accurate labels and thereby
increase the amount of data that the models are trained on. This results in
a ”human-in-the-loop” model, in which unsupervised machine learning helps
a human label the data, which in turn helps train a supervised machine
learning model.

7.1.4 Detecting Various Arrhythmias

While JET is the most common type of postoperative arrhythmia in chil-
dren, a system that can detect multiple types of arrhythmias and distinguish
among them would be even more useful to clinicians. A future project could
incorporate data from various types of arrhythmias and aim to detect each
one.
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